

Investigation on the non-Darcy term in flow equations

Martin Kovács, Patrik Veleczki

SPE HUN Workshop Visegrád, 16 November 2017

Society of Petroleum Engineers

Agenda

Darcy's equation Modification of Darcy's law Steps of the research Grouping & classing Sensitivity tests for oil and gas • Behaviour of the β factor under changing PVT properties Summary table and how to use it

Darcy's equation

$$q_o = \frac{\left(P_e - P_{wf}\right) \times (k_o \times h)}{141.2 \times \mu_o B_o \left[ln\left(0.472\left\{\frac{r_e}{r_w}\right\}\right)\right]}$$

$$q_g = \frac{\left(P_e^2 - P_{wf}^2\right) \times \left(k_g \times h\right)}{1.424 \times 10^3 \mu_g Tz \left[ln\left(0.472\left\{\frac{r_e}{r_w}\right\}\right)\right]}$$

Neglected forces in case of low fluid velocities

Capillary force

Inertial forces

Turbulent friction force

Equation for normal fluid flow through porous medium

Significant forces in case of high fluid velocities

Compression force Gravitational force

Capillary force Inertial forces Turbulent friction force

Modification of Darcy's law

The equation of Forscheimer (1901)

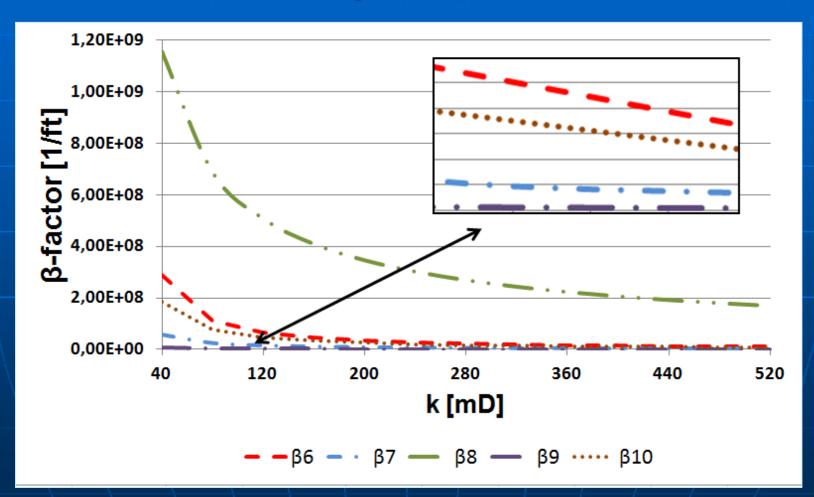
$$-\frac{dP}{dL} = \mu \frac{v}{k} + av^2$$

The equation of Jones (1967) For oil wells For gas wells $P_e - P_{wf} = Aq_o^2 + Bq_o \quad P_e^2 - P_{wf}^2 = Aq_g^2 + Bq_g$ $A = \frac{2.30 \times 10^{-14} \times \beta B_o^2 \rho}{h^2 r_w} \quad A = \frac{3.16 \times 10^{-12} \times \beta \gamma_g T z}{h^2 r_w}$ $B = \frac{1.424 \times 10^3 \mu_g Tz \left[ln \left(0.472 \left\{ \frac{r_e}{r_w} \right\} \right) \right]}{4}$ $141.2 \times \mu_o B_o \left[ln \left(0.472 \left\{ \frac{r_e}{r_w} \right\} \right) \right]$ B =k_oh k_ah

β factor: dominant role in the flow of the fluids

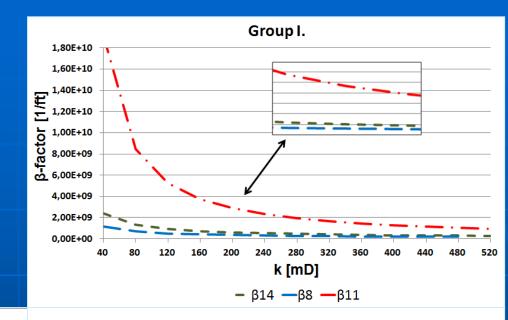
The β factor

- inherited from the equation of Forscheimer
- causes the differences from the Darcy equation
- literature —> lot of formula for the beta factor

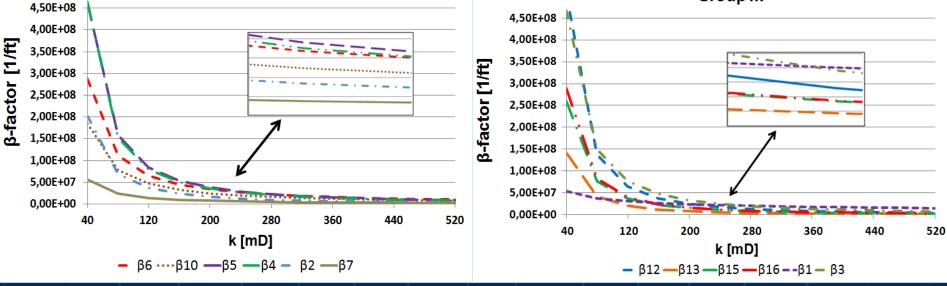

Examples for the investigated β factors

Authors	Geertsma	Pascal	Cole & Hartman
	(1974)	(1980)	(1998)
Equations	$\left(\frac{0.005}{\varPhi^{5.5}k^{0.5}}\right)$	$\left(\frac{4.8\times10^{12}}{k^{1.176}}\right)$	$\frac{8.17 \times 10^9 \varPhi^{0.537}}{k^{1.79}}$

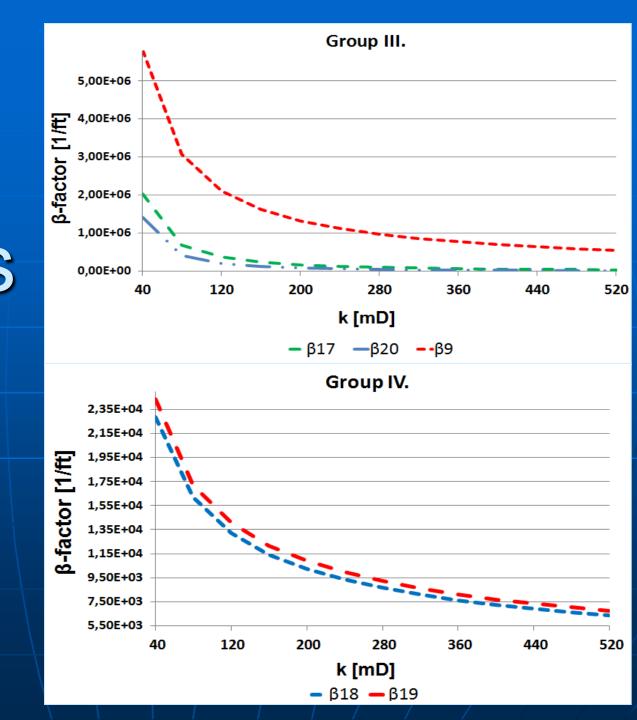
The steps of our investigation

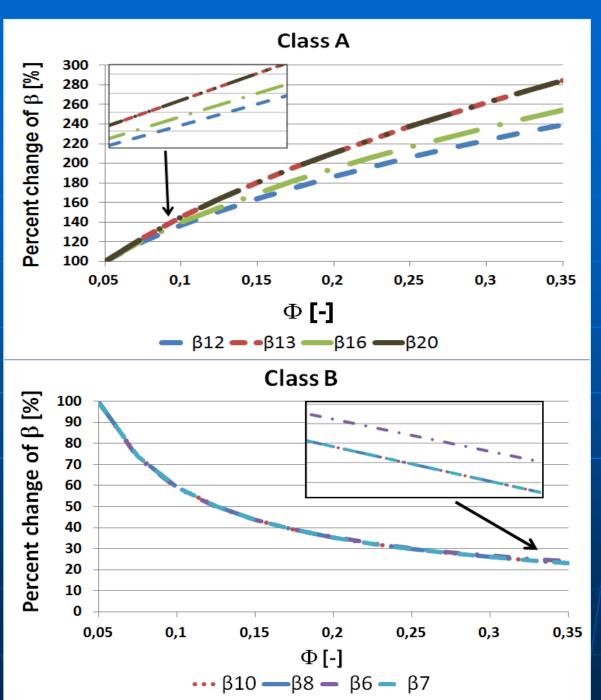

I. Grouping & classing based on similar trends of the curves
II. Sensitivity analysis for oil and gas wells – individual properties
III.Sensitivity analysis for oil and gas wells – based on depth

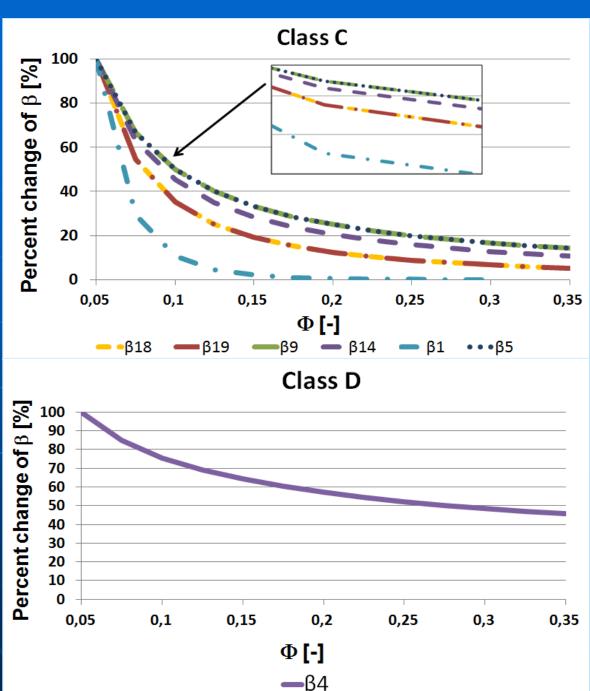
Significant differences between the 20 ß equations



Group II.




Group II.

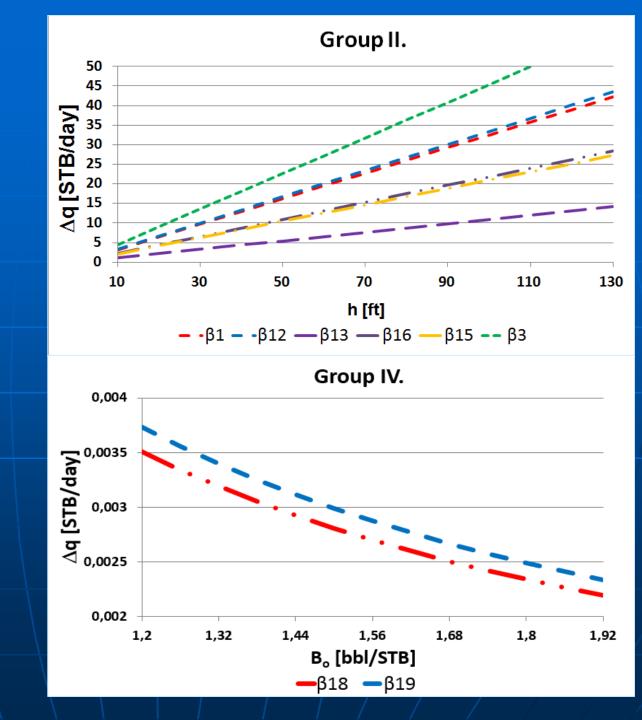

8

4 Groups Group III. Group IV.

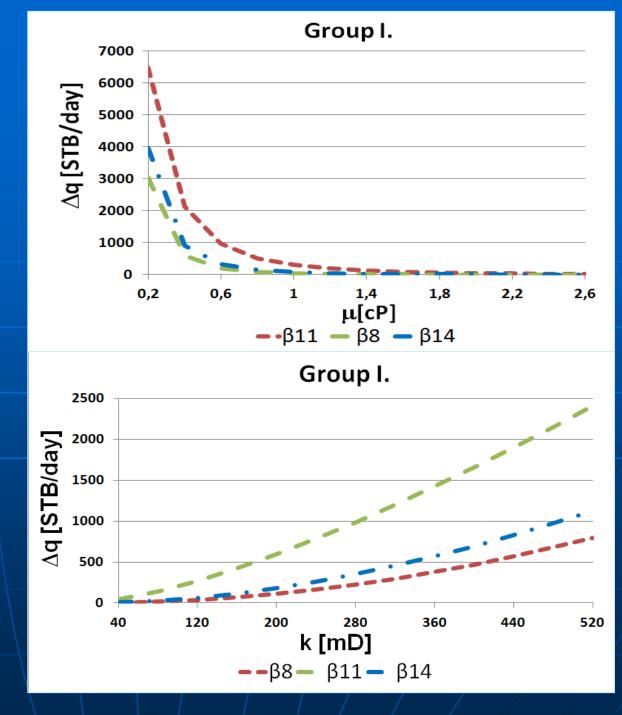
5 Classes Class A Class B

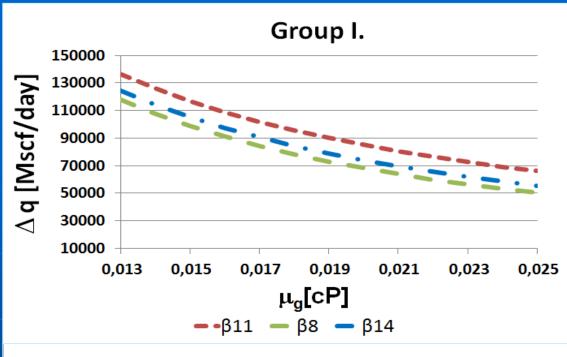
5 Class C Class D + Class E

Sensitivity analyzes

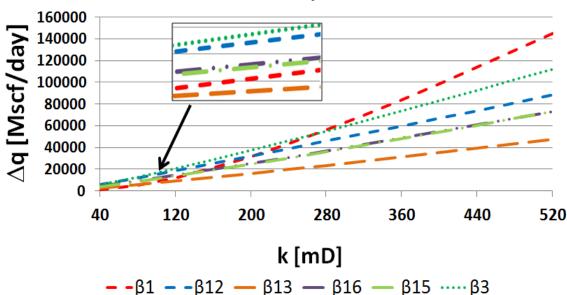

In case of oil:

In case of gas:

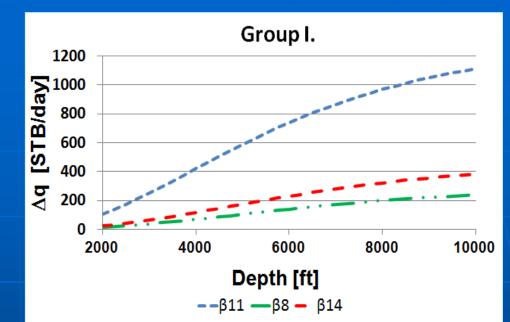

- Permeability(k)
- Viscosity(μ)
- Formation volume factor(Bo)
- Reservoir thickness(h)

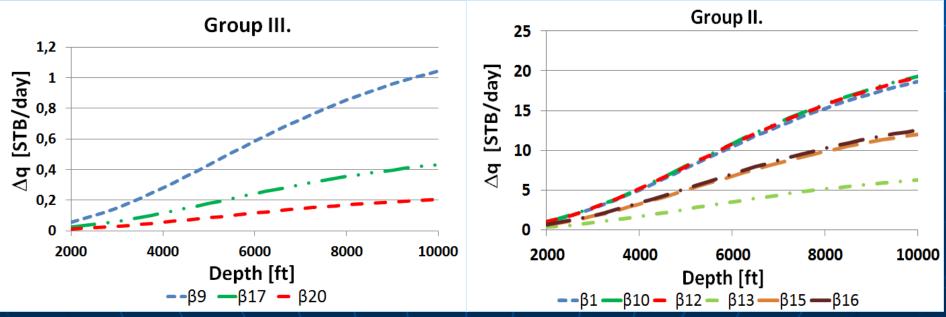

Permeability(k)
Viscosity(µ)

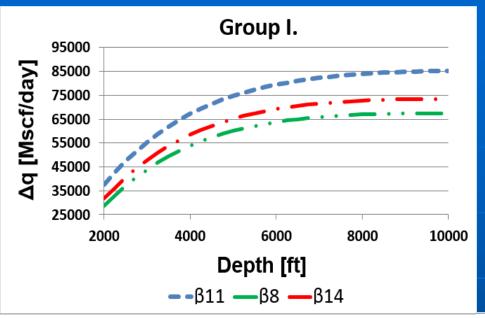
Sensitivity analyzes for OIL



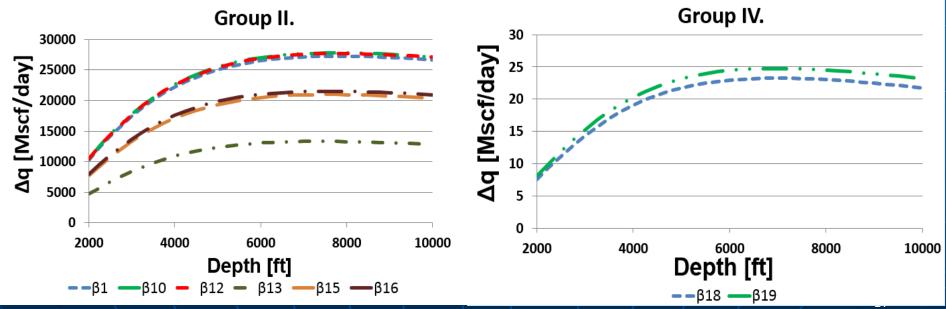
Sensitivity analyzes for OIL

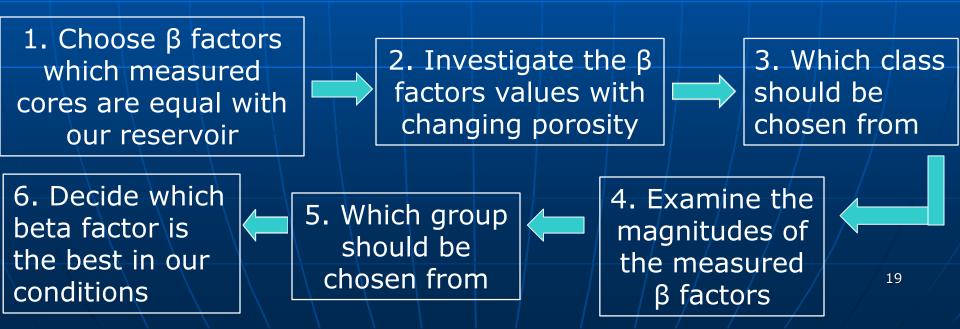



Group II.



Sensitivity analyzes for GAS


Sensitivity analyzes based on the depth for OIL


Sensitivity analyzes based on the depth for GAS

ß factor	Formula	Measurement	Group	Class
₿4	$\beta_1 = \left(\frac{0.005}{d^{0.2}k^{0.2} \times 10^{-11}}\right) \times 30.5$	sandstone	П.	c
ße	$\beta_{\rm 2} = 6.15 \times 10^{10} (k)^{-1.00}$	sandstone	н.	E
ßs	$\beta_{\rm 2} = 1.98 \times 10^{11} (k)^{-1.64}$	sendstone	П.	E
ßi	$\beta_{\rm d} = 7.89 \times 10^{10} (k)^{-1.00} \left[\varPhi(1 - S_{\rm w}) \right]^{-0.404}$	sandstone limestone	П.	D
βs	$\beta_{\rm s} = 2.11 \times 10^{10} (k)^{-1.10} [{\rm \Phi}(1-S_{\rm w})]^{-1.0}$	sendstone	П.	с
Şs.	$\beta_{0} = \frac{1}{[\Phi(1 - S_{w})]^{2}} \times e^{42 - \sqrt{407 + 81 \cdot \ln\left(b / \left(\Phi(1 - S_{w})\right)\right)}}$	sendstone	П.	в
βτ	$\beta_{7} = \frac{5.5 \times 10^{7}}{k^{1.23} \Phi^{0.73}} \times 0.305$	sendstone	П.	8
₿8	$\beta_{\rm x} = \frac{5.5 \times 10^9}{k^{2/4} {\rm e}^{2/k}}$	Wilcox-homok	L	в
₿9	$\beta_{\psi} = \left(\frac{5.123 \times 10^{-1}}{\varPhi} \left[\frac{1}{(1 - S_{w})\sqrt{k \times 10^{-11}}}\right]^{1.039}\right) \times 30.5$	sendstone	Ш.	c
6 10	$\beta_{10} = (1.82 \times 10^2 k^{-1/4} \phi^{-1/4}) \times 30.5$	sandstone Ilmestone dolomite	п.	в
β 11	$\beta_{11} = \left(\frac{4.8 \times 10^{12}}{k^{1.176}}\right) \times 0.305$	Low permeability hidraulically fractured well's datas	L	E
6 12	$\beta_{12} = \frac{1.07 \times 10^{12} \times \Phi^{0.449}}{k^{1.02}}$	sandstone Ilmestone	П.	٨
β ts	$\beta_{12} = \frac{2.49 \times 10^{11} \phi^{0.127}}{k^{1.79}}$	sandstone limestone	I.	
β 14	$\beta_{14} = \frac{9 \times 10^9}{k^{0/7} \times d^{2/7}}$	sendstone	L	с
βıs	$\beta_{10} = \frac{17.2 \times 10^{10}}{k^{1.70}}$	sandstone	н.	E
(Dite	$\beta_{10} = \frac{4.8 \times 10^{11}}{k^{12} \times \Phi^{-0.42}}$	sandstone	п.	*
\$ 17	$\beta_{27} = \frac{2.018 \times 10^{7}}{k^{1.00}} \times 0.305$	limestone, crystal limestone, well- classed sandstone	III.	E
бте	$\beta_{12} = \frac{1}{\phi} \sqrt{\frac{1.8 \times 10^4}{k\phi}} \times 0.305$	sandstone	IV.	0
β 19	$\beta_{1*} = \frac{1}{\phi} \sqrt{\frac{245 \times 10^4}{12k\phi}} \times 0.305$	sandstone	IV.	c
β se	$\beta_{10} = \frac{8.17 \times 10^7 e^{0.317}}{k^{1.77}} \times 0.305$	sandstone limestone	III.	٨

Results of the research

β factor	Formula	Measurement	Group	Class
βı	$\beta_1 = \left(\frac{0.005}{\varPhi^{5.5}k^{0.5} \times 10^{-11}}\right) \times 30.5$	sandstone	II.	С
<mark>β</mark> 2	$\beta_2 = 6.15 \times 10^{10} (k)^{-1.55}$	sandstone limestone	II.	Е
β ₃	$\beta_3 = 1.98 \times 10^{11} (k)^{-1.64}$	sandstone limestone	II.	Е

References:

- 1. A. B. H., R. A. K., M. N. A., D. B. S. és R. I. M., "Numerical and Experimental Modeling of Non-Darcy Flow in Porous Media," SPE, Trinidad, West Indies, 2003.
- L. G. Jones, E. M. Blount és O. H. Glaze, "Use of Short- Term Multiple.Rate Flow Test to Predict Performance of Wells Having Turbulence, SPE6133," SPE Annual Conference and Exhibitation, New Orleans, 1967.
- 3. J. Greetsma, "Estimating the Coefficient of Inertial Resistance in Fluid Flow Through Porous Media," SPEJ, 1974.
- 4. H. Pascal, R. G. Quillian és J. Kingston, "Analisys of Vertical Fracture Length and Non-Darcy Flow Coefficient Using Variable Rate Tests," SPE, Dallas, 1980.
- 5. M. F. Coles és K. J. Hartman, "Non-Darcy Measurements in Dry Core and the Effect of Immobile Liquid," SPE Gas Technology Symposium, Calgary, Canada, 1998.

Thanks for your attention!

University of Miskolc SPE Student Chapter

