### Overview of Petroleum Recovery Methods József Pápay

Visegrád. 2014.11.20 SPE Hungarian Section



# Innovative Applications For Stranded Barrels of Oil Conference

Visegrád, 20 November 2014

**Society of Petroleum Engineers** 

### Presentation is based on:

- Pápay J.:2003. Development of Petroleum Reservoirs -Theory and Practice. Hungary. Akadémiai Kiadó. Pp.(1-940).
   www.akademiaikiado.hu
- Pápay J.:2013. Exploitation of Unconventional Petroleum Accumulations -Theory and Practice. Hungary. Akadémiai Kiadó.Pp(1-361). <a href="www.akademiaikiado.hu">www.akademiaikiado.hu</a>
- Pápay J.:2015. Exploitation of Tight Oil Plays. (Manuscript-under plublication).
- IEA (International Energy Agency) Data
- EIA-USA (Energy Information Administration) Data

- Classification of petroleum from apects of recovery
- Recovery methods of conventional petroleum
- Recovery methods of unconventional petroleum
- Recovery factors, estimated recoverable reserves and costs
- Predicted US production
- Conclusions

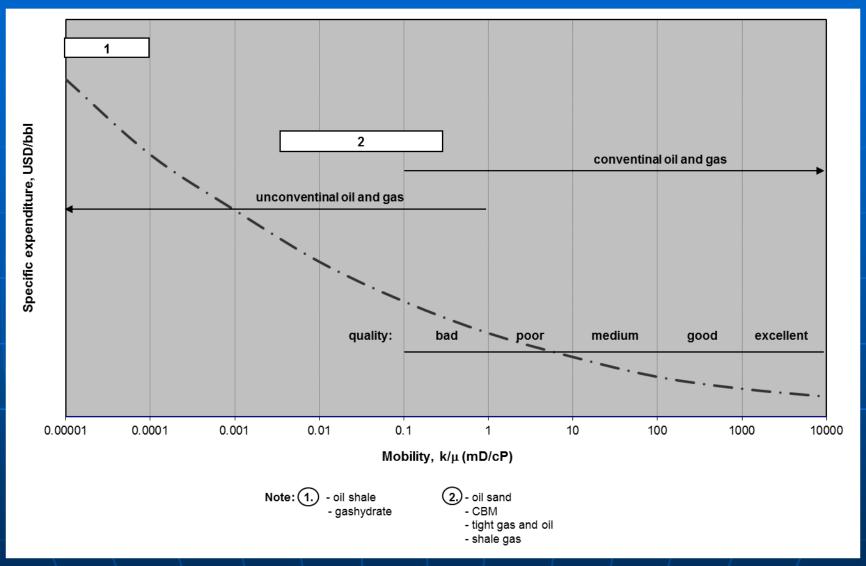





Figure 1.2. Conventional reservoir rocks and fluids



Figure 1.3. Unconventional reservoir rocks and fluids

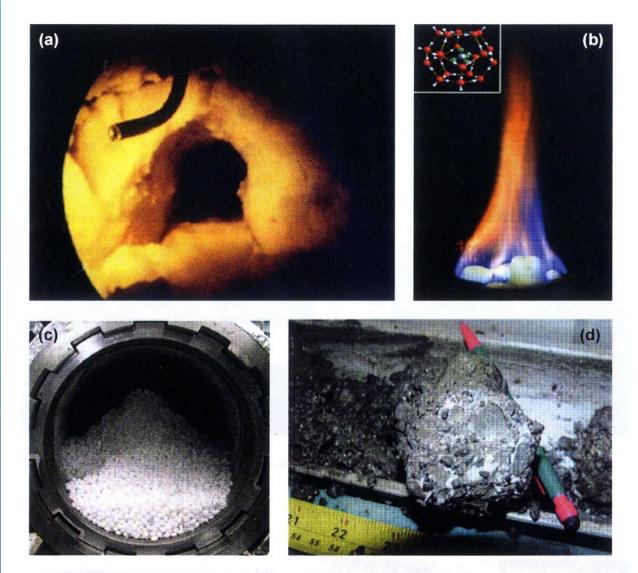
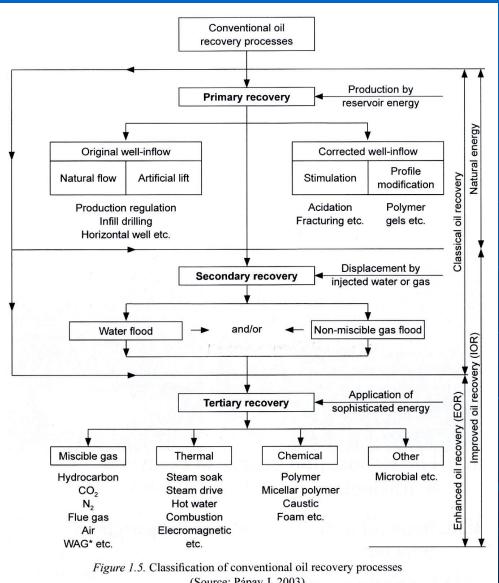



Figure 1.4. Unconventional gas: Hydrate


### Comparition of conventional and unconventional resources - driving mechanisms-

|    |                                | Unconvention |        |             |              |                       | ntional    | onal                 |              |            |  |
|----|--------------------------------|--------------|--------|-------------|--------------|-----------------------|------------|----------------------|--------------|------------|--|
|    |                                | Conver       | ntion. |             | oil          |                       |            | gas                  |              |            |  |
| No | Parameters                     | oil          | gas    | oil<br>sand | oil<br>shale | tight<br>light<br>oil | СВМ        | tight<br>gas<br>sand | shale<br>gas | hydrate    |  |
| 1  | permeability<br>k(p)           | - ?          | - ?    | - ?         | +?           | ++                    | ++         | ++                   | ++           | -          |  |
| 2  | viscosity                      | +            | _      | ++          | +            | +?                    | -          | \_                   | _ \          | ++         |  |
| 3  | mobility                       | +            | +?     | ++          | ++           | ++                    | ++         | ++                   | ++           | ++         |  |
| 4  | gravity<br>(buoyancy)          | ++           | ++     | - ?<br>(+)  | (+?)         | -?<br>(+?)            | +* (+)**   | -<br>(-?)            | - (-?)       | - (++)     |  |
| 5  | relative perm.<br>(multiphase) | ++           | ++     | +?<br>(++)  | -?<br>(++)   | +?                    | -<br>(+)   | -<br>(+?)            | -<br>(+?)    | - (++)     |  |
| 6  | capillarity                    | +            | +      | +?          | -?<br>(+)    | +? (+)                | - (+?)     | ++ (++)              | ++ (++)      | - (+)      |  |
| 7  | rock<br>compres.               | -            | -      | -           | - (+)        | +?                    | -?<br>(+)  | + (+)                | + (+)        | -<br>(-)   |  |
| 8  | turbulence<br>flow             | -            | +?     | -           | no flow      | ++?                   | +?<br>(+?) | + (+)                | + (+)        | no flow    |  |
| 9  | Darcy flow                     | +            | +      | +?          | -+           | +?                    | +?         | - + -                | -?<br>+-     | -+         |  |
| 10 | hydrodynam                     | +            | +      | +?          | -?           | +?                    | +          | -                    | _            | -<br>(-?)  |  |
| 11 | material bal.                  | +            | +      | -<br>(-)    | -<br>(-)     | -<br>(-)              | + (+)      | -<br>(-)             | -<br>(-)     | -<br>(-)   |  |
| 12 | adsorption                     | -            | -      | -           | -            | -                     | ++         | 1 -                  | +            | - /        |  |
|    | drainage<br>area               | L            | LL     | SS<br>S     | SSSS<br>SS   | SSSS                  | S<br>L     | SS<br>S              | SSS<br>SS    | SSSS<br>SS |  |

Note: \*: original state; \*\*: improved state; -: not; +: yes; -?: probably not; +?: probably yes; L: large; S: small

Pápay J.-2013-14

- Classification of petroleum from apects of recovery
- Recovery methods of conventional petroleum
- Recovery methods of unconventional petroleum
- Recovery factors, estimated recoverable reserves and costs
- Predicted US production
- Conclusions

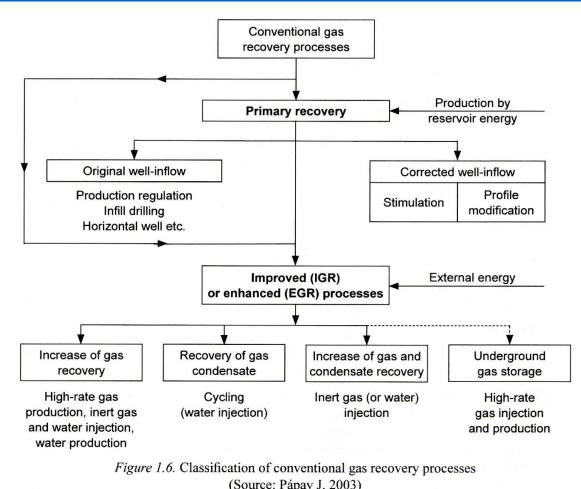


(Source: Pápay J. 2003)

*Table 1.3.* Screening of conventional oil recovery methods (Source: Pápay J. 2005)

|                                                                                                 |                               | S <sub>o</sub> K             |                             | De                             | epth        |                | Oil viscosity                             |
|-------------------------------------------------------------------------------------------------|-------------------------------|------------------------------|-----------------------------|--------------------------------|-------------|----------------|-------------------------------------------|
| Recovery method                                                                                 | Type of rock                  | S <sub>0</sub><br>[-]        | [mD]                        | H<br>[ft]                      | Pr<br>[bar] | Tr<br>[°F]     | [cP]                                      |
|                                                                                                 |                               | Natural o                    | lepletion (p                | rimary)                        |             |                |                                           |
| Using reservoir energy                                                                          | NC                            | > 0.4-0.5                    | > 0.1-1                     | NC                             | NC          | NC             | < 300<br>(< 10)                           |
|                                                                                                 |                               | Pressure ma                  | intenance (                 | secondary)                     |             |                |                                           |
| Pressure<br>maintenance with<br>injection of non-<br>miscible fluids                            | NC                            | > 0.5–0.6<br>(0.7–0.8)       | > 0.1-1<br>(> 10)           | NC                             | NC          | NC             | < 300<br>(< 10)                           |
|                                                                                                 | En                            | hanced oil r                 | ecovery (ter                | rtiary – EOR)                  |             |                |                                           |
|                                                                                                 |                               | Gas i                        | niscible floo               | ding                           |             |                |                                           |
| First contact (C <sub>3</sub> -C <sub>4</sub> )                                                 | (NC)***                       | > 0.3<br>(0.7–0.8)<br>[0.8]  | > 0.1-1<br>(> 10)           | (NC)                           | >100        | (NC)           | < 5<br>(< 0.5)<br>[0.2]                   |
| Multiple contact condensation (C <sub>1</sub> -C <sub>2</sub> -C <sub>3</sub> -C <sub>4</sub> ) | NC****                        | > 0.3<br>(0.7–0.8)<br>[0.75] | > 0.1-1<br>(> 10)           | (NC)                           | >150        | (NC)           | < 5<br>(< 0.5)<br>[0.5]                   |
| Multiple contact<br>vaporization<br>(CO <sub>2</sub> )                                          | NC                            | > 0.3<br>(0.7–0.8)<br>[0.55] | > 0.1–1<br>(> 10)           | (NC)                           | >180        | (NC)           | < 10<br>(< 1)<br>[1.5]                    |
| Multiple contact<br>vaporization<br>(C <sub>1</sub> , N <sub>2</sub> , flue gas)                | NC                            | > 0.3<br>(0.7–0.8)<br>[0.75] | > 0.1-1<br>(> 10)           | (NC)                           | >300        | (NC)           | < 5<br>(< 0.5)<br>[0.2]                   |
| V 12                                                                                            |                               | Th                           | ermal floodi                | ng                             |             |                |                                           |
| Steam flooding**                                                                                | High-porosity sand, sandstone | > 0.4<br>(0.7–0.8)<br>[0.72] | > 200<br>(> 1000)<br>[2540] | < 4500<br>(400–4500)<br>[1500] |             | NC             | < 200 000 > 150<br>(100-10 000)<br>[4700] |
| In situ combustion**                                                                            | High-porosity sand, sandstone | > 0.5<br>(0.7–0.8)<br>[0.66] | > 200<br>(> 500)            | < 11 500<br>[3500]             |             | > 100<br>[135] | <1000<br>(10–1000)<br>[1200]              |
|                                                                                                 |                               | Ch                           | emical flood                | ing                            |             |                |                                           |
| Polymer                                                                                         | Sandstone                     | > 0.5<br>[0.80]              | > 20<br>[800]               | (NC)                           | (NC)        | < 200<br>[123] | <150 > 10<br>(1*-150)<br>[85]             |
| Micellar polymer                                                                                | Sandstone                     | > 0.35<br>[0.53]             | > 20<br>[450]               | (NC)                           | (NC)        | < 175<br>[95]  | < 35<br>[6]                               |
| Caustic                                                                                         | Sandstone                     | > 0.35<br>[0.53]             | > 20<br>[450]               | (NC)                           | (NC)        | < 200          | < 200<br>[15.5]                           |

Notes: () favorable parameters


[] average at present application

\* if the target is "only" to make the reservoir homogenous

\*\* minimum reservoir thickness for steam > 20 ft, for combustion > 10 ft

\*\*\* not very critical

\*\*\*\* not critical



(Source: Pápay J. 2003)

### Screening of IGR/EGR

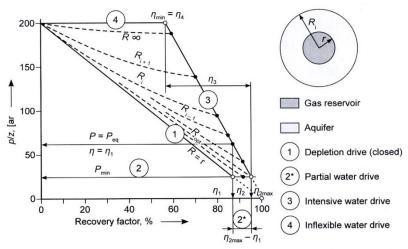



Figure 1.7a. Relation of reservoir pressure and end-point recovery factor for gas reservoir (Source: Pápay J. 2003)

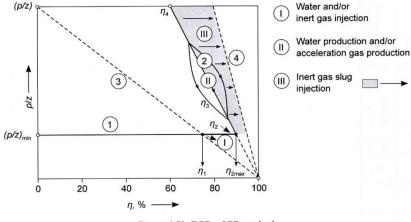



Figure 1.7b. EGR – IGR methods (Source: Pápay J. 2003)


The parameters in *Table 1.4* are as follows:

- $\eta$ : gas recovery factor at abandonment conditions (-),
- $\eta_{v}$ : volumetric sweep efficiency of encroached water (–),
- $S_{gi}$ : initial gas saturation (-),
- $S_{gr}$ : residual gas saturation (-),
- c: effective aquifer rock compressibility (1/bar),

(g/m³) -: <100 100-400 >400

Pápay J.-1997-2003

- Classification of petroleum from aspects of recovery
- Recovery methods of conventional petroleum
- Recovery methods of unconventional petroleum
- Recovery factors, estimated recoverable reserves and costs
- Predicted US production
- Conclusions
- Thank You



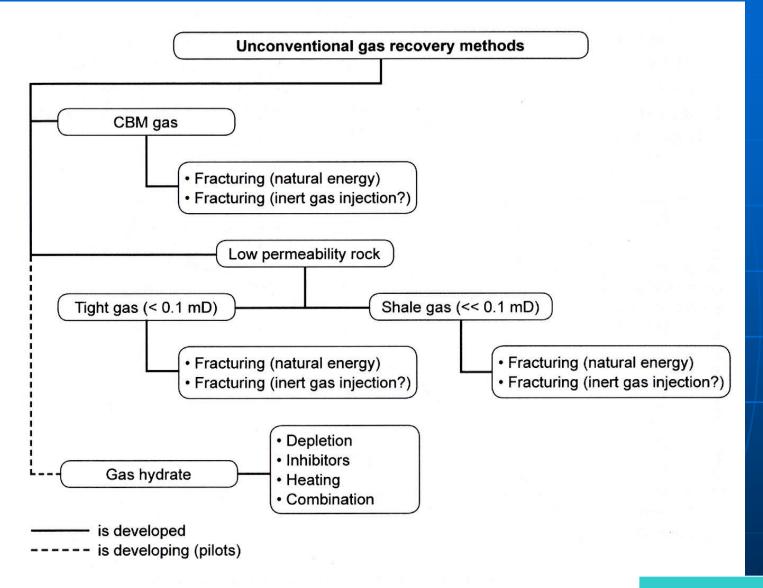



Figure 4.2. Classification of unconventional gas recovery processes

Quartz-rich (brittle)

Clay-rich (ductile)

Bamett shale

Cretaceous shale

Figure 7.13. Shale mineralogy, stimulation effectiveness. (Source: CSUG 2008, after Kuuskraa V.A. and Stevens S. 2009b)

- Classification of petroleum from aspects of recovery
- Recovery methods of conventional petroleum
- Recovery methods of unconventional petroleum
- Recovery factors, estimated recoverable reserves and costs
- Predicted US production
- Conclusions

### **Recovery factors of different petroleum resources**

| Conventional petroleum (%) |                                |                      |  |  |  |  |  |  |
|----------------------------|--------------------------------|----------------------|--|--|--|--|--|--|
|                            | Currently                      | Expectable (maximum) |  |  |  |  |  |  |
| Oil                        | 33-35*                         | 45-50*               |  |  |  |  |  |  |
| Gas                        | 75-80*                         | 75-80*               |  |  |  |  |  |  |
|                            | Non conventional petroleum (%) |                      |  |  |  |  |  |  |
| Heavy oil & oilsand        | (9-32) ** ill. (12-17)***      | ?                    |  |  |  |  |  |  |
| Oil shale                  | 0?                             | ?                    |  |  |  |  |  |  |
| Tight light oil            | 3-7 (min:1-max:10) *****       | ?                    |  |  |  |  |  |  |
| СВМ                        | 20-60****                      | ?                    |  |  |  |  |  |  |
| Tight gas                  | 10-50****                      | ?                    |  |  |  |  |  |  |
| Shale gas                  | 6-50****                       | ?                    |  |  |  |  |  |  |
| Hydrate                    | 0?                             | ?                    |  |  |  |  |  |  |

Note: \* world average; \*\* USGS (2003); \*\*\*Soniere A., Lantz F. (2007); \*\*\*\* data of US \*\*\*\*\* (EIA-2013)

Table 2a. Reserve and rate ratio of oil

|             | Conventional         | Conventional + unconventional |                      |  |  |
|-------------|----------------------|-------------------------------|----------------------|--|--|
| Reliability | Reserve / Rate years | Reserve / Rate years          | Reserve / Rate years |  |  |
| Proved      | 43                   | 48                            | 48                   |  |  |
| Probable    | 62+7***              | 88+10****                     | 69+8****             |  |  |
| Possible    | 95                   | 149                           | 104                  |  |  |
| Reference   | *                    | **                            | ***                  |  |  |

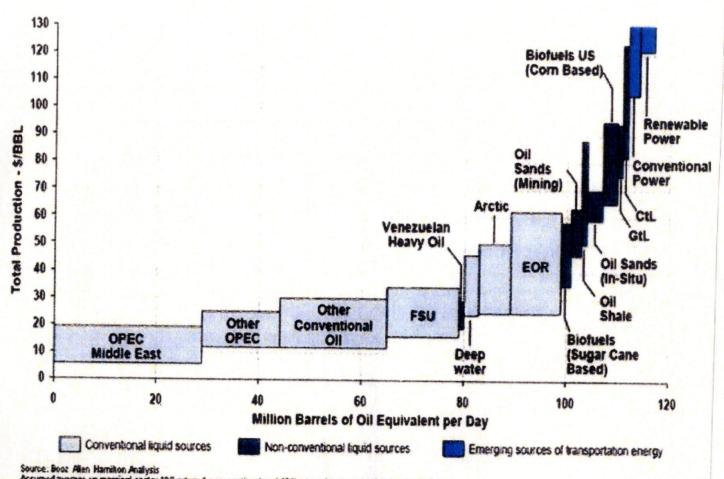

Notes: \* USGS (2000), \*\* International Petroleum Encyclopedia (2006), \*\*\* Labastie A. (2010), \*\*\*\* spare (years).

Table 2b. Reserve and rate ratio of gas

|             | Conventional         | Conventional + unconventional |                      |  |  |
|-------------|----------------------|-------------------------------|----------------------|--|--|
| Reliability | Reserve / Rate years | Reserve / Rate years          | Reserve / Rate years |  |  |
| Proved      | 60                   | 60                            | 60                   |  |  |
| Probable    | 79+9****             | 132+15****                    | 155+17****           |  |  |
| Possible    | 115                  | 235                           | 283                  |  |  |
| Reference   | *                    | **                            | ***                  |  |  |

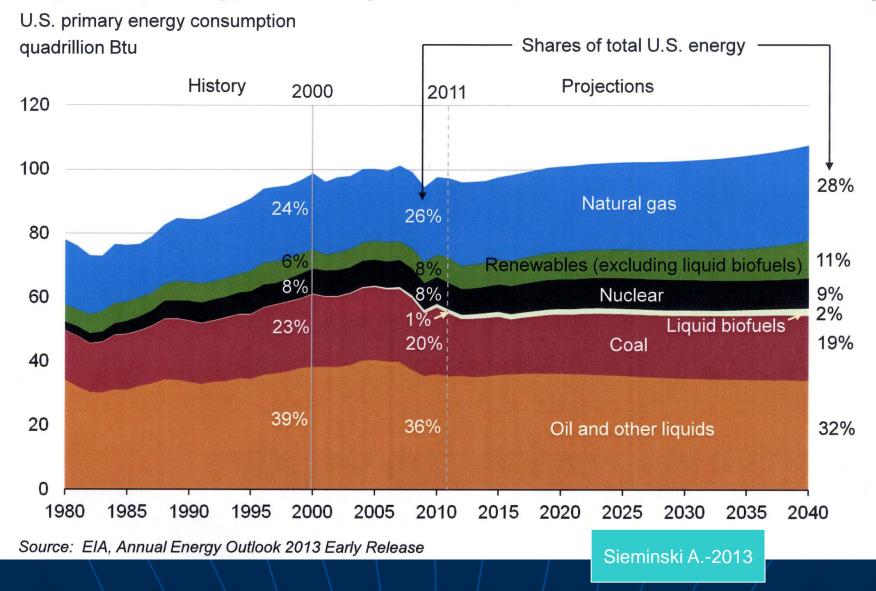
Notes: \* EIA (2005), \*\* IEA–WEO (2005 and 2009), \*\*\* IEA–WEO (2009), a new estimation comparing the total volume of  $850 \cdot 10^{12}$  m<sup>3</sup> (55% conventional gas), \*\*\*\* spare (years).

### Forecasted Transportation Fuels Supply Curve (2020)



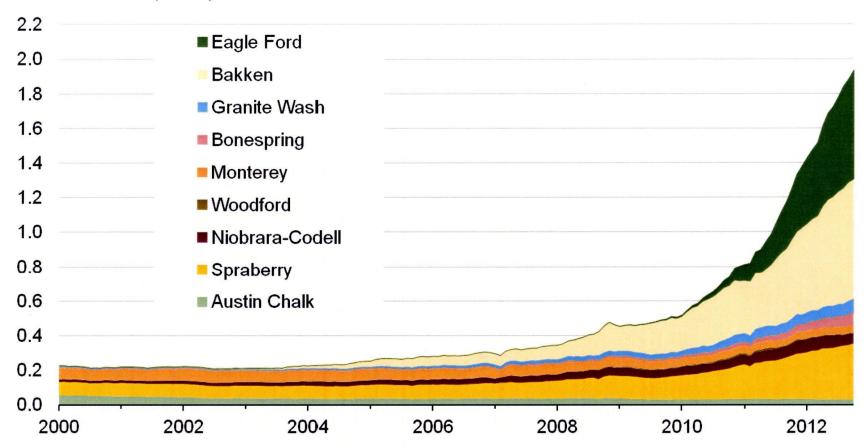
Assumed average vs marginal costs; 10% return for conventional and 13% return for unconventional technologies: No subsidies for biofuels, no carbon offset costs; after severance and production taxes

- Classification of petroleum from aspects of recovery
- Recovery methods of conventional petroleum
- Recovery methods of unconventional petroleum
- Recovery factors, estimated recoverable reserves and costs
- Predicted US production
- Conclusions


Table 4. Estimated petroleum production of the world

| . N. | ЛΙ   | lian | +~ |   |
|------|------|------|----|---|
| ΙV   | 4111 | lion |    | 1 |

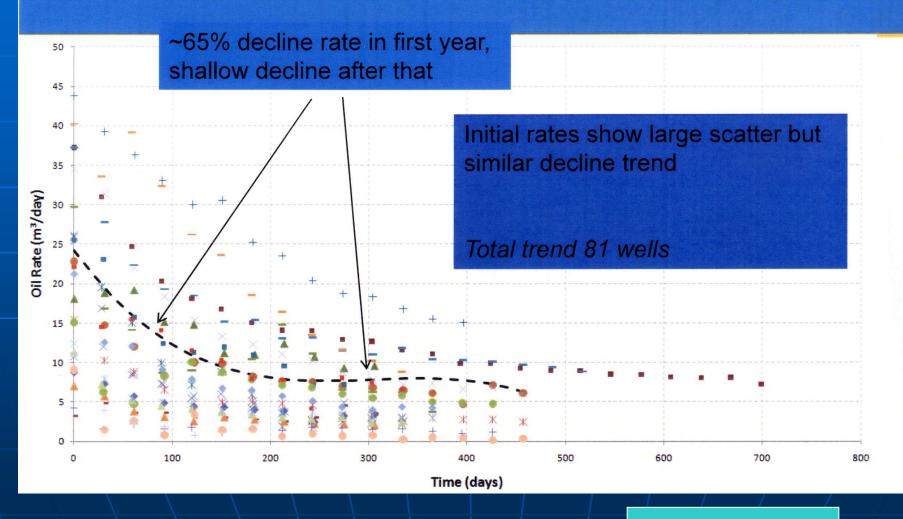
| Years       | 2004  | 2020  | 2025  | 2050  | 2050  | 2100  |
|-------------|-------|-------|-------|-------|-------|-------|
| Most likely |       | 7,425 | 7,650 | 6,600 | 5,400 | 5,075 |
| Maximum     | 6,189 | 9,500 | 9,600 | 9,400 | 8,000 | 7,100 |
| Minimum     |       | 6,900 | 6,100 | 1,650 | 1,700 | 2,000 |


Schollnberger W.E..-2006

# U.S. energy use grows slowly over the projection reflecting improving energy efficiency and slow, extended economic recovery

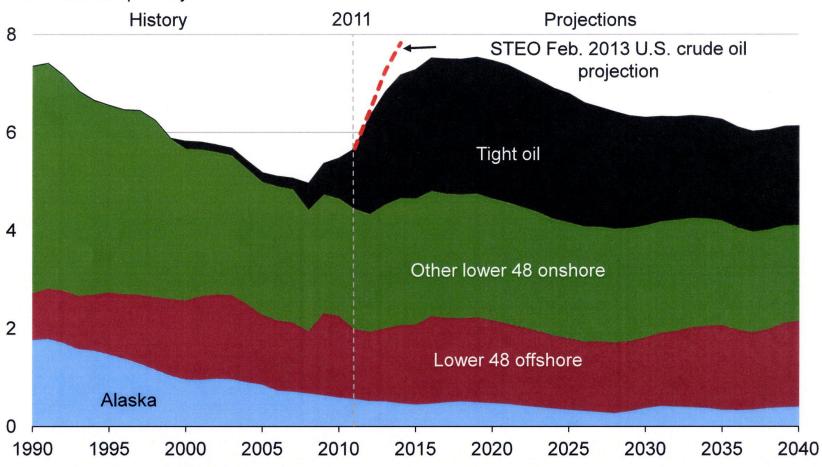


### Domestic production of tight oil has grown dramatically over the past few years


tight oil production for select plays million barrels per day

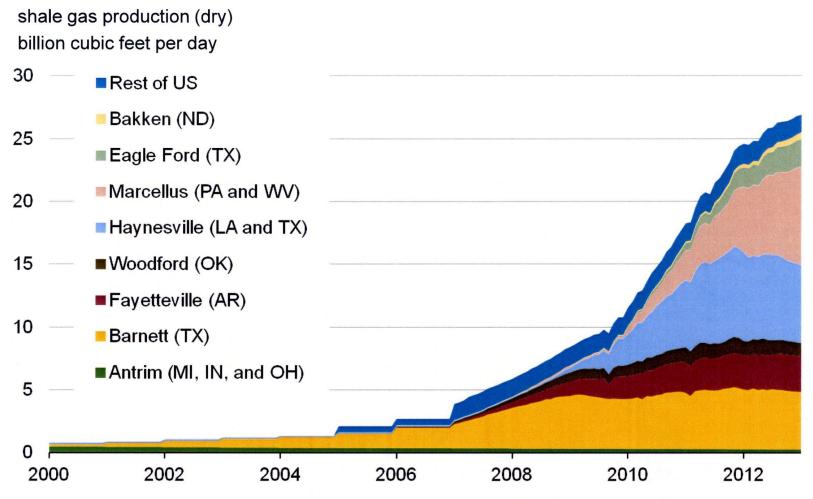


Source: Drilling Info (formerly HPDI), Texas RRC, North Dakota department of mineral resources, and EIA, through October 2012.


Sieminski A.-2013

### Sample of Pembina Cardium Multi-Frac'd Wells

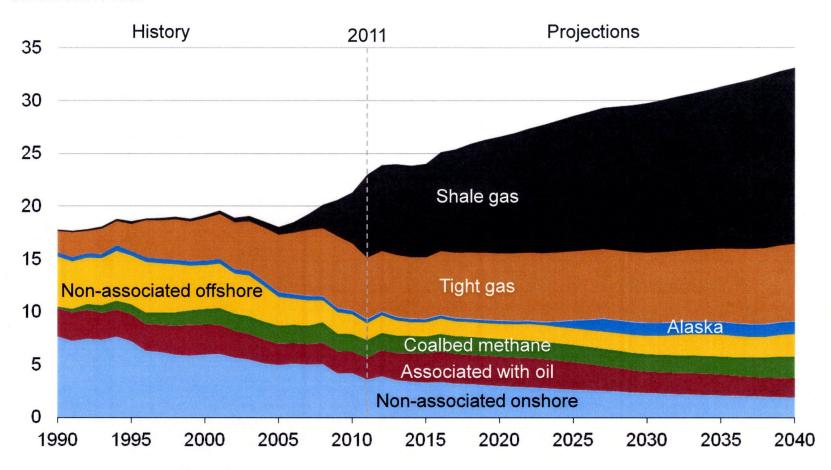



## U.S. tight oil production leads a growth in domestic production of 2.6 million barrels per day between 2008 and 2019

U.S. crude oil production million barrels per day



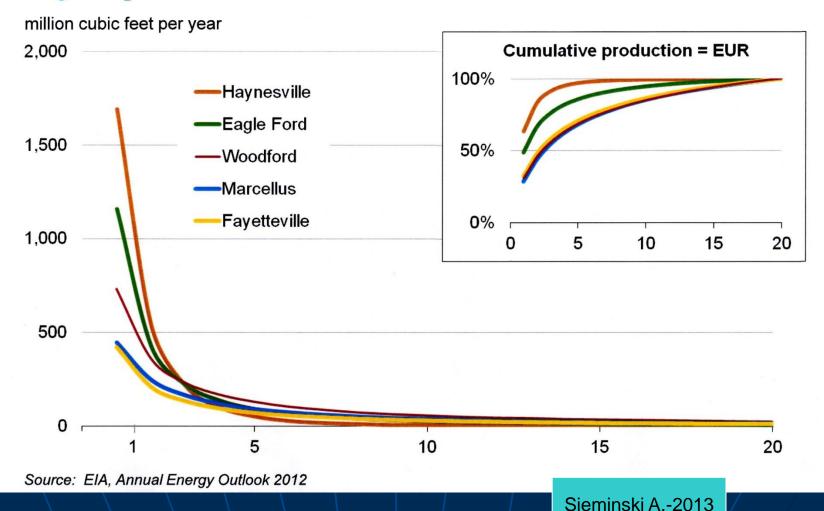
Source: EIA, Annual Energy Outlook 2013 Early Release and Short-Term Energy Outlook, February 2013


### Domestic production of shale gas has grown dramatically over the past few years



Sources: LCI Energy Insight gross withdrawal estimates as of January 2013 and converted to dry production estimates with EIA-calculated average gross-to-dry shrinkage factors by state and/or shale play.

### Shale gas leads growth in total gas production through 2040


U.S. dry natural gas production trillion cubic feet



Source: EIA, Annual Energy Outlook 2013 Early Release

Sieminski A.-2013

An average well in shale gas and other continuous resource plays can also have steep decline curves, which require continued drilling to grow production



- Classification of petroleum from aspects of recovery
- Recovery methods of conventional petroleum
- Recovery methods of unconventional petroleum
- Recovery factors, estimated recoverable reserves and costs
- Predicted US production
- Conclusions

- An overview is given about the petroleum recovery methods in an integrated way;
- Driving mechanisms of unconventional petroleum production is much more complicated as of concentional one;
- In case of unconventional petroleum accumulations except oilsandsimproved recovery methods are on laboratory or pilot scale only, therefore the recovery factors are low or modest yet;
- Exploitation of unconventional petroleum accumulation is a challenge for petroleum engineers;
- It seems that due to dynamic development of the research and the science the unconventional reserves step by step become conventional ones from the aspect of economy.
- Unconventional petroleum resources are already of primary importance to supply the energy demand

# Thank You