

Value of Logging While Drilling Data Examples from Gas Fields

Society of Petroleum Engineers

Tracey Flynn, Baker Hughes

Value of LWD Data

- Examples of.....
 - Fracture Identification, density and orientation
 - Formation Pressure
 - Compartments
 - Depletion
 - Pore Pressure
 - Well Placement
 - LWD sensors to stay in the reservoir

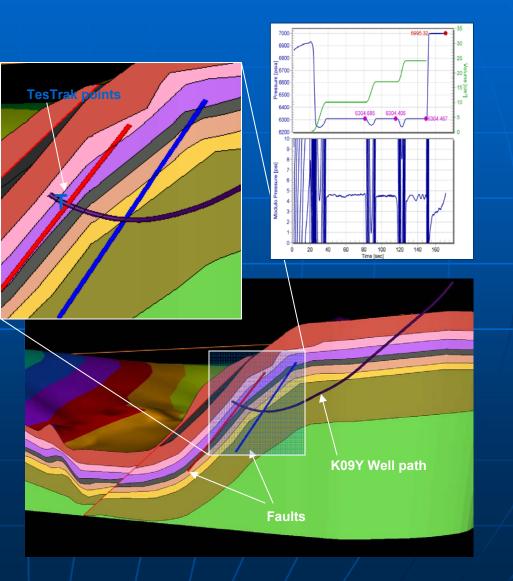
What is the Formation Pressure?

 Important in Gas Fields.

- Gradient
- Absolute Pressure
- Depletion
- Injection
- Compartments
- Connectivity

Formation Pressure Case History – Southern North Sea

- The South North Sea (SNS) contains dry gas-charged Carboniferous (Westphalian) age sandstones
- Stacked, multi-storey fluvial channel belts, encased in overbank shales
- Gas source are Carboniferous coal measures
- Sealed above by Zechstein evaporites
- Ketch and Schooner fields first gas production in 1997, depletion is expected


Formation Pressure Data- SNS

Well Data

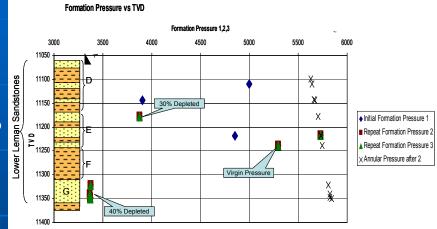
- Location: Southern North Sea
- · Date: May 2007
- Hole Size: 6-in. from 14,650ft to 17,747ft
- Well Type: Directional well building from 66° to 104°
- Formation: Carboniferous Ketch and Cleaver Formation

<u>Objectives</u>

- Complete directional build and hold the tangent through the boundary fault to explore the adjacent fault block
- LWD used to obtain pressure data from selected sands, indicating if the sands were depleted or virgin
- Obtain enough data to prove whether communication had occurred between the reservoir sections
- 4³/₄-in. Motor and LWD used
- <u>Results</u>
- Successful tests were taken on three BHA runs in all the reservoir sections
- delivered accurate formation pressure in real-time
- Test results allowed good interpretation of the reservoir formation pressure structure in both fault blocks

Formation Pressure Testing in 6" hole With real-time mobility measurements

Well Data


- Location: UK Southern North Sea
- Date: December 2005
- Hole Size: 6"
- Well Type: directional well with initial 3° DLS building to horizontal across a potentially depleted section
- Formation: Leman Sandstone and Carboniferous sequences

Objectives

- 1st Deployment of 4 ³/₄" TesTrak worldwide
- Obtain Formation Pressure and Mobility While Drilling
 - Measure formation pressure in Leman sands
 Determine reservoir depletion
 - Provide mobility of the formation

<u>Results</u>

- All objectives achieved
- > All tests taken over one run, 48.9 hr circulation
- 11 good seals (5 very tight tests ie. < 0.1 mD/cP) and 1 r seal
- All tests transmitted to surface in real time

	TesTrak Formation Pressure Test Depth		Initial Formation Pressure	Repeat Formation Pressure	Repeat Formation Pressure	Mobility
	MD	TVD	1	2	3	Best Test
	ît	ît	psa	psia	psia	mD/cp
	15402.00	11347.12	337[.25	3370.02	3369.91	156.28
	15341.00	11339.82	3368.02	3367.79	3367.67	149.94
	15187.00	11321.20	3376.90	3376.44	3376.38	8.66
	14773.00	11239.15	5296.91	5296.51	5296.34	6.58
	14711.00	11217.79	4851.31	0.00	0.0C	TIGHT
Ţ	14707.00	11216.34	573C.38	5730.85	6729.60	No SEAL
	14606.00	11178.02	3875.89	3875.72	3875.60	44.97
	14518.00	11143.40	3904.19	0.00	0.0C	TIGHT
nc	14516.00	11142.70	631.33	0.00	0.0C	TIGHT
	14433.00	11110.12	4998.71	0.00	0.0C	TIGHT
	14405.00	11099.15	114€.20	0.00	0.0C	TIGHT
	15429.00	11350.29	3376.71	3370.99	3370.54	42.16

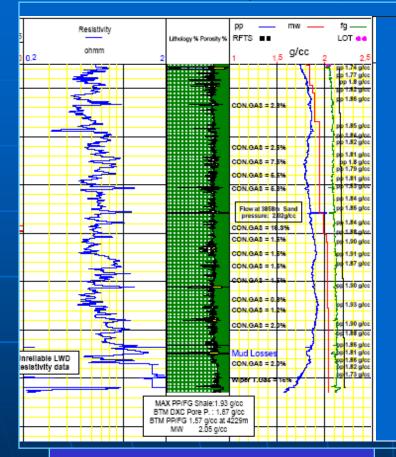
Calibrated Pore Pressure Prediction

Urnreillable LWD

Resistivity data

Resistivity

ohmm


e flow at 3858m and TEST

his log to estimate pore pressure in the

supercharged sands. It was calibrated

TRAK pressure measuring tool.

Pore Pressure prediction re-calibration with LWD data

Before LWD calibration Max PP shale 1.93 g/cc Bottomhole PP 1.57 g/cc After LWD calibration Max PP sand 2.04 g/cc Bottomhole PP 1.82g/cc

MAX Pore P. Sand: 2.04 g/cc

Next Supercharged Sand:

1.82g/cc 2.05 g/cc

RFTS .

iheh Fm.

CON.GAS -

CON.GAS -

CON.GAS -

CON.GAS - 5.5%

CON.GAS = 5.6%

CON.GAS = 19.3%

CON.GAS -

CON.GAS -

CON.GAS -

CON CAS

CON.GAS -

Mud Losses

CON.GAS - 1.2%

CON.GAS - 2.0%

CON.GAS - 2.0%

g/cc

1.5

586

5%

556

Lithology % Porosity %

LOT 🐽

PP measured from FPWD = 2.03 g/cc

PP measured from FPWD = 2.036 g/cc

Mud weight was increased according to TesTrak results. Successfully drilled ahead.

Fracture identification, Density and Orientation

Resistivity imaging
Shallow reading
High Resolution

Fractured Shale Reservoir

Steeply dipping calcite-filled fractures

Images For perforations selection

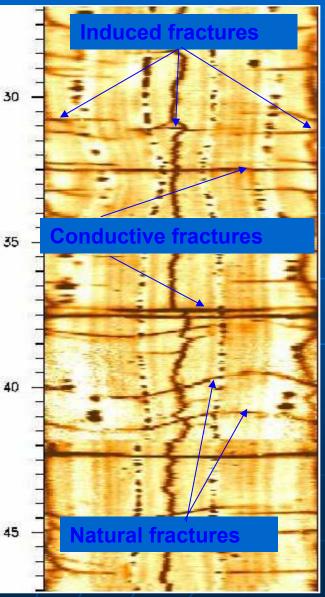
Objective

- Identify reservoir variability in horizontal well
- Identify zones of hydraulic fracture networks
- Pick perforations to best stimulate untreated rock

Induced fractures

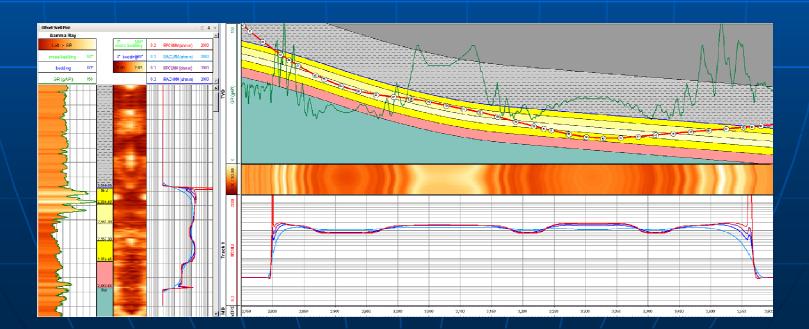
- Don't normally transverse borehole
- Vertical well showed most induced fractures NE-SW

Conductive hydraulic fractures

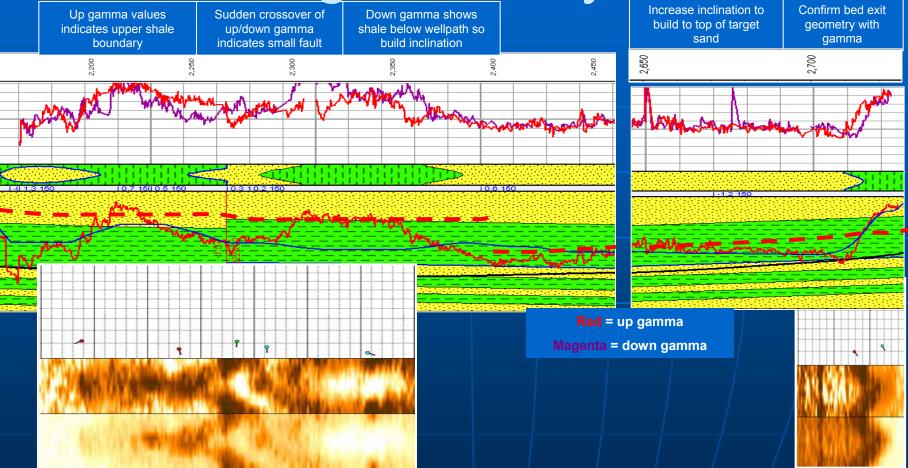

- Hydraulic fractures from offset well
- Transverse the entire bore hole

Natural fractures

- Activated by stimulation
- Different strike NW-SE

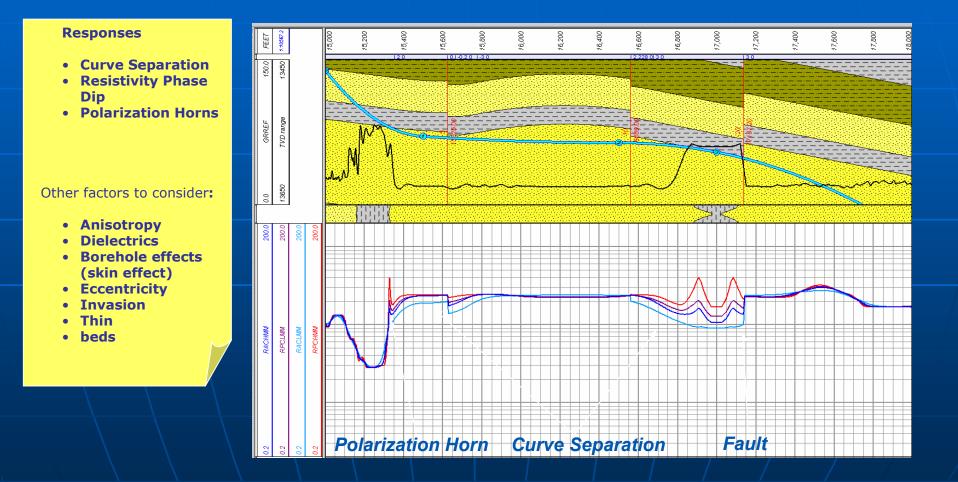

Conclusion

- Information used to pick perforations
- Stimulate intervals that have not been treated
- More effective stimulation dollars
- Increased production

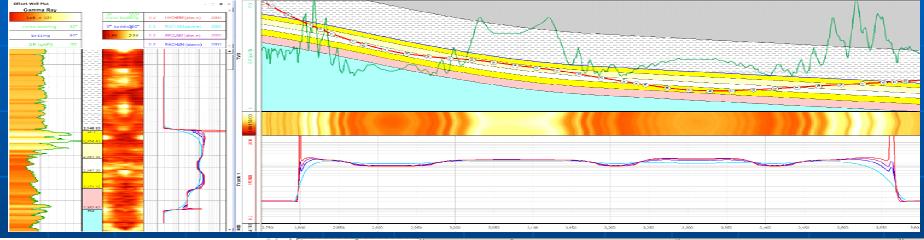

Reservoir Navigation – putting the well in the optimal place!

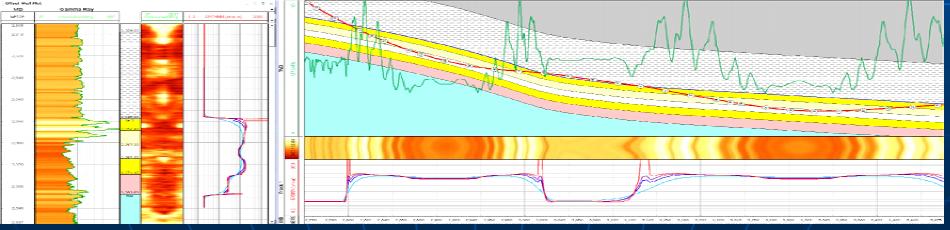
- Staying fixed distance above water contact
- Staying within 1 m of top of reservoir
 Staying within sweeter zone of reservoir

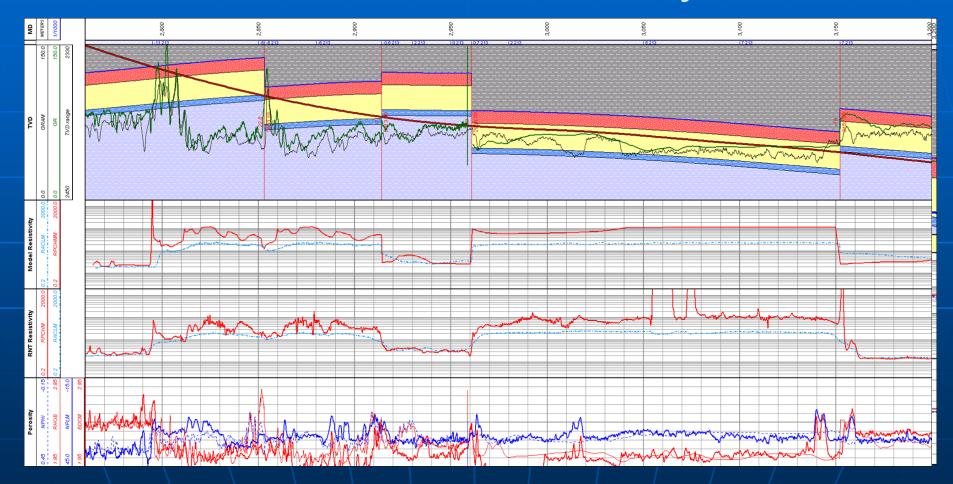
Simple Well Placement –


gamma ray

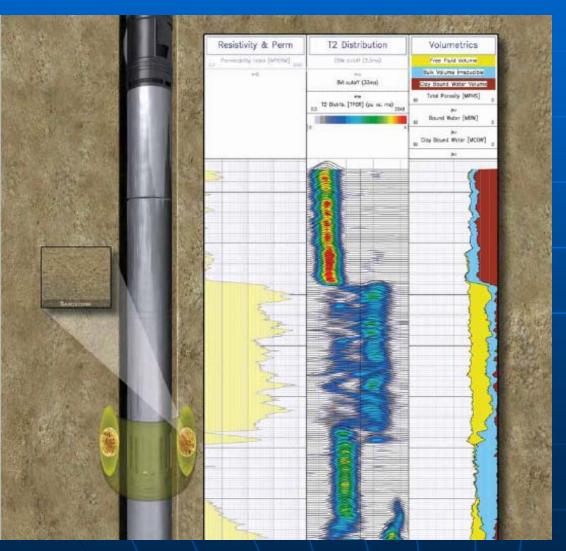
Improved net-to-gross, with 88% of the horizontal section in the target sand


Without up/down gamma different steering decisions would have been made, reducing NTG


Propagation Resistivity unique responses in horizontal wells


Optimising Well Placement Importance of modelling Pre-well predictive response modelling

• Offset data converted to True Stratigraphic Thickness



Optimising Well Placement Model versus Reality

LWD Magnetic Resonance

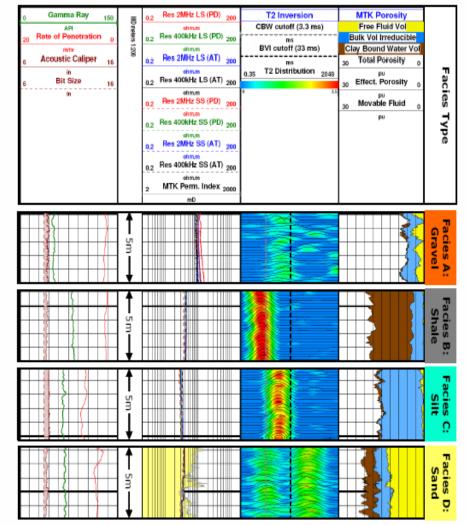
- Direct measurement of fluid filled porosity (HI)
 - Independent of lithology
 - No radio-active source
- Estimate of movable fluid volume
- Permeability estimation
- Fluid typing
- Irreducible water saturation
- Clay/shale volume

Optimising Well Placement: Using Magnetic Resonance

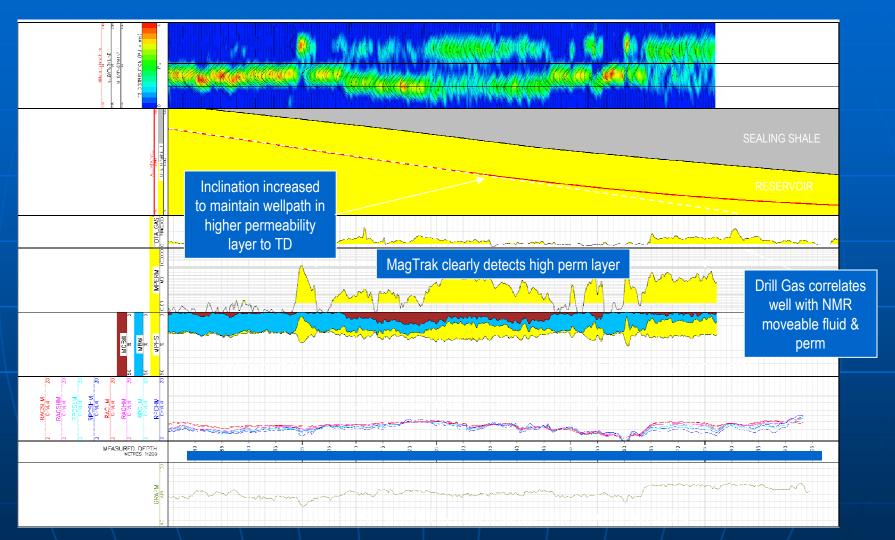
Well Data

- Location: Italy, Po plain, Ripalta 61
- Hole Size: 8 ½" Highly Inclined
- Well Type: Development for gas storage
- Formation: Sand –silt shale, depleted gas

Objectives

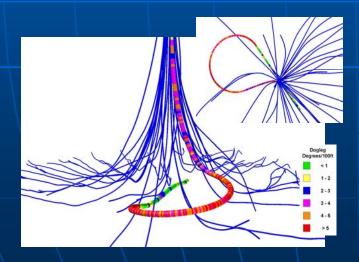

- Delineate permeable and non-permeable zones for optimum gas storage
- Characterize complex formation
 - ⇒ GR affected by mica
 - ⇒ Very poor resistivity contrast
 - ⇒ No DENSITY and POROSITY due to LIH risk

INTEQ Solution


 MagTrak in combination with AutoTrak, Resitivity, Gamma and Drilling Dynamics service

Results—Answers While Drilling

- Accurate source-free porosity is determined with high vertical resolution
- Clear delineation of shale, silt, and sand zones by characteristic T2 signatures
- Geosteering was optimized by MR real-time data, while GR and Resistivity were not suitable
- The drillpath in high perm zones was maximized by MR real-time data increasing the pay by 32%


Steering on Permeability index

Summary

Logging While Drilling data

- Drill wells with less risk
- Stay in the reservoir longer
- Better evaluation of reservoir

