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Uncertainty Management in Upstream Projects

Concern:

• Majority of the industry projects never 
deliver planned production volumes*).

Solutions:

• Holistic uncertainty assessment to 
challenge optimism**)

• Ensemble-based reservoir modelling

Challenges:

• Efficient use of digital strategies for fast 
execution and concept selection

*) Nandurdikar and  Wallace, SPE-145437 (2011)
**) Scott Meddaugh, SPE-175009 (2015), SPE DL (2018)  
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Overview

• Short introduction to a 
framework for uncertainty 
management

• Practical solution 
strategies and examples 

• Impact on result presentation for 
decision support under 
uncertainty

4
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• Geothermal – Hotspot 
assessment

2
• Brownfield model maturation

3

• Field development under 
uncertainty
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Overview

• Short introduction to a 
framework for uncertainty 
management

• Practical solution 
strategies and examples 

• Impact on result presentation for 
decision support under 
uncertainty
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Data Quality – Managing Uncertainties

6*) M. Elharith et al. JPEPT (2019) 

Oil rim development project*)

Static 
Model 
Input

Dynamic
Model
Validation

Log data and interpretation
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Uncertainty Framework in Geoscience 

A probabilistic formulation combines the 

• belief – prior model �(�) and

• evidence – difference between model and measurement �

Alternative conclusions drawn for cases outside prior range

1. Model falsification*) –
exclude cases     not consistent with prior model

2. Model maturation –
revise prior model assumptions, learn from data

� � � = �(�) × �(�|�)

Measurement
Simulation

*) Quantifying Uncertainty in Subsurface Systems, C. Scheidt, L. Li, & J. Caers, Wiley (2018)

Prior distribution �(�, �)
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1. Geothermal: Natural Fracture Modelling and 
Sweet Spot Maps

Challenge

• Identify sweet spots for well targeting 
and optimization for robust drilling 
decisions under subsurface uncertainty

Solution

• Create alternative structural models 
and geo-mechanical drivers to explain 
natural fractures

• Automate multiple realization 
workflow to capture subsurface 
uncertainty

8

Star Energy Geothermal 
Darajat II, Limited 
operates 271 MW of 
steam and electricity 
capacity, Indonesia

Innovative technical strategies in natural fracture characterization for well placement: Case 
Study from Darajat Field, J.P. Joonnekindt at al., accepted for publication at the IPTC 2022
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Modelling Natural Fractures using 
Geomechanics

Geomechanical forward modelling

• Enhance classical approaches

• Based on a structural model

• Estimate stress perturbations due to 
Fault sliding during paleo tectonic 
events etc.

Natural fracture characteristics (type, 
orientation, location)

• at the time of their development

• dependent on the local state of stress 
and rock type

9

Bending
constraints or 
far field stress

Modelling Natural Fractures in Reservoirs

10

Data analysis Fracture drivers

Discrete Fracture 
Network

Up-scaled model 

9
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Multiple-Realization Workflow

11

Regional stress orientation
Uncertainty

Decay law

Uncertainty

Aperture ∝ Length

Distance 
to fault

Stress
Orientation

Driver Realizations

Intrusion

Faults

Thermal

k [mD]
EAGE Annual 2022, R. Davies at al. , ECMOR 2022, R. Schulze-Riegert et al.

Result Preparation

Probability maps deliver a combined view on 
multiple-realizations for robust host spot 
identification

Question to ask:

• Which area shows a high probability 
finding permeability above a defined 
threshold level, e.g., k > 20 [mD]

Answer, e.g.:

• Probability for area “n” finding 

– k < 20 [mD]  is ~ 16%

– k > 20 [mD]  is ~ 84%
12

Distribution for property in grid cell n

10   20   30   40  k [mD]
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Permeability Probability Map: P(k > 30 md)

Question: Probability finding permeability above 30 mD ? 

Upper Layer: Top – 500 m Middle Layer: 500 – 300 m Base Layer: 300 – Bottom

Maturation

2. Model Calibration and Maturation

Integrated Reservoir Modelling Model Calibration Decision on feedback loop

Fast
calibration

14

Converge towards the digital twin

Logs PVT

Static Dynamic
Uncertainty 

Matrix
Error 
Metric

History 
Matching

Calibrated 
models

Production Data

History 
Matching 
StrategyIn Place Volume Recoverable Volume
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Ensemble-based History Matching 
Strategies and Probabilistic Modelling

15

��

��

�(��, ��)

Falsification
• Extensive sampling of 

geological models, 
scenarios, realizations

• Model selection using
Multi-dimensional scaling, 
distance matrices, etc. 

• No inverse modelling

Markov Chain Monte Carlo
• Structured approach to 

history matchinig
• Sampling from approximated

posterior distribution
• ML-based predictive

modelling  

Ensemble-based (Smoother)
• Initial prior ensemble
• Data assimilation 
• Evolve prior ensemble 

to posterior ensemble 

Oil Rim Field Development Assessment

Challenge
• History match an oil-rim reservoir*), offshore Malaysia 

with 40 years production history.
• Uncertainty assessment of an infill drilling strategy.

Solution
• Multiple history matched models
• Probability maps for revised well placement strategy

Results
• Automation of repetitive integrated modelling processes
• Robust incremental increase across ensemble 

of matched simulation cases – revised infill design

*) M. Elharith et al. JPEPT (2019) 
16
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Probabilistic Framework for Result Analysis

17

Soil ≥ 0.4

Base case map

Probability Map

Base case
Realizations

Single case 
FDP optimization

Robust
FDP optimization

History 
Base FDP scenario
Forecast

Current

P(Soil ≥ 0.4)

Uncertainty Management 
Contributions

Uncertainty matrix
• Identify key subsurface uncertainties

Multiple history matched solutions
• Trusted prediction candidates

Forecast and probabilistic result analysis
• Probability maps for infill well design 

support under subsurface uncertainty

18
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Result presentation and analysis

• Prediction candidate selection of 8 
trusted history matched solutions

• Optimize infill well locations based 
on probability maps

• For infill redesign prove robust 
incremental increase of 
production

20

Horizonal well

Baseline infill producer location Optimized infill producer location

Probability map end of history

�� ��

Medium potential
Medium risk

Medium potential
Low risk

High potential
High risk

3. Field Development Planning under 
Subsurface Uncertainty

1. Optimize economic success criteria 
2. Identify potential and address risk

G. Williams, SPE-89974 (2004)

FDP under 
Uncertainty

Input to decision 
support

21

Range of acceptable matches

History Prediction

Basecase

History Prediction

History Prediction
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The Olympus Challenge*)

Reservoir

• Inspired by a virgin oil field in the North Sea

• Two formations with fluvial channel sands and

• Alternating layers of coarse, medium and fine sands 

Production

• 7 Injectors, 11 Producers

• Voidage replacement strategy

Challenges

• Optimize field development plan

• Consider 50 equiprobable subsurface realizations

• Compare solution to reference case

22
*) Initiative of the “Integrated Systems Approach to Petroleum Production“ 
research consortium;  R. Fonseca et al., COMG (2020)

Final

Opportunity index

Solution Strategies
Parameterization design*)

• Coordinates heel and toe, Well type, 
Status (on/off)

Execution: 

• 105 000 
simulations

• 2 100 
tested designs on 50 realizations

Parameterization design**)

• Preconfigured well designs:
100+ well location candidates

Execution:

• 23 000 simulations

• 2 000 tested designs 
on subsets of 50 realizations

23

Initial

*) V.L.S. Silva et al. EAGE (2018) **) S. Tanaka et al. EAGE (2018)
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Automation using Machine Learning

Scope:

• Optimization of well drilling targets

• Predictive machine learning model to 
capture subsurface structure

Machine learning application support:

• Identification of production targets

• Classification of production targets –
low, mid, high performance

Identify production targets

Classify production targets

24
P. Lang, T. Adeyemi, R. Schulze-Riegert, ECMOR (2020)

Application of Machine Learning (ML)

Execution:

• Automatic well target selection

Robust well location selection among 100s 
target candidates

Single realization-based Probability map

Deterministic 
25

Simulation results

Opportunity index

Connected volumes

Target candidates

Target

ML model

Ensemble-based
(50 cases)

24
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Prod-1
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Decision Criteria

Success  criteria are based on economic 
objectives and deliver a “yes or no”

Deterministic:

• Recoverable Volume >  MEFS∗)

Probabilistic:

• �80 (Well NPV) > Economic Demand

Target:

• 90% of all wells deliver the economic 
demand at an 80% probability level or 
higher**)

*) MEFS: Minimum economic field size
**) R. Schulze-Riegert et al. COMG (2020)
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Probabilistic Result Presentation

One plot – full ensemble view

• ensemble performance

• differences of optimized 
and reference scenario

Robust optimization and 
probabilistic ranking  

• Wells moved from loss to 
profitable

• Identify problematic wells

• Highlight and justify low 
risk scenarios

27

NPV

Base
Optimized

ΔNPV (Optimized – Base)

Well ranking optimized scenario

Well economic demand [1E7] 
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R. Schulze-Riegert et al. SPE-202660 (2020)

“High performing scenario”: 
More than 90% of all wells 
deliver the economic demand at 
an 80% probability level or higher

26
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Conclusion

• Ensemble-based reservoir modelling provides a 
basis for a forecast uncertainty assessment

• Ensemble-result deliveries thrive on automation;

– execution and 

– analysis services

• Economic success criteria for maturing projects 
require a “Yes” or “No” to pass decision gates. 
Uncertainty management will be measured to 
support this objective. 

28

Take Away

• Subsurface uncertainty assessment of production forecasts 
impacts all modelling domains from static to dynamic

• Uncertainty management services rely on well defined success 
criteria for substantial decision support

• Major technology contributions are expected from analytics and 
machine learning applications – guided by domain expertise

29
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