

Practices in the Production Enhancement and Cost Optimization in CE European Region

Workshop

Visegrád, 16 November 2017

Society of Petroleum Engineers

Liquid loading Prevention for Low Capacity Gas Wells

Rethinking of Old Stuffs

Zoltan Turzo, PhD. UoM

WHY?

WHY?

Source: U.S. Energy Information Administration, <u>International Energy</u> <u>Outlook 2016</u> and <u>Annual Energy Outlook 2016</u>

20)nePetro	via University of Miskolc	Help	About us Contact us
Home	Journals	Conferences	🃜 Cart	Log in / Register
Q liquid and loading a	Search			
Peer reviewed only	Published between:	2012 and 2017	Advanced sear	rch Show search help

Search results: Your search for liquid and loading and gas and well, published between 2012 and 2017 has returned 2,568 results.

	- 6		1	
Inh		Them	I MAS	

- Recognition
- Modeling
- Case studies using well known methods

FACTS OF LIQUID LOADING

Liquid in the gas stream

- water, condensate
- critical velocity
- small amount enough
- increase FBHP
- self-generating effect
- decreased gas production
- decreased recovery (higher abandonment pressure)

Recognition of fluid load

Recognition of fluid load "usual"

Date	Depth [m]	Pressure [Mpa]	∆l [m]	∆р [Мра]	Density [kg/m ³]
4/9/2009	10	6.641			
	1500	7.572	1490	0.931	62.5
	1800	7.866	300	0.294	98.0
	1955	8.793	155	0.927	598.1
31/08/2010	10	4.411			
	1500	5.009	1490	0.598	40.1
	1800	6.789	300	1.78	593.3
	1955	8.172	155	1.383	892.3

Recognition of fluid load "usual"

Recognition of fluid load "un-usual"

Recognition of fluid load "un-usual"

Date	Depth	Pressur	Δl	Δp	Density
	[m]	e [Mpa]	[m]	[Mpa]	$[kg/m^3]$
1/9/2010	10	4.405			
	1000	4.796	990	0.391	40.3
	1900	5.107	900	0.311	35.2
	2060	5.17	160	0.063	40.1
28/09/2011	10	3.996			
	1000	4.332	990	0.336	34.6
	1900	4.617	900	0.285	32.3
	2060	4.673	160	0.056	35.7

Gradient measurements ..un-usual load"

Closed Gradient

Gradient measurements "un-usual load"

Producing gradient

Dew point curve

MODELING

Transient nature of loading process:

- correlations,
- analytical,
- numerical.

Help to understand, to identify, to predict!

Important, but not enough!

CASE STUDIES USING WELL KNOWN METHODS

- Sizing Tubing
- Compression (reduced WHP)
- Plunger Lift
- Foam
- Hydraulic Pumps
- Beam Pumps
- Gas Lift
- ESP
- · PCP
- Thermal methods
- Cycling

CONTINUOUS REMOVAL OF LIQUID

- Tubing sizing
- Compression
- Foam
- Thermal methods

Prevent liquid accumulation Keep FBHP constant Requires relativly higher rates or pressure

INTERMITTENT METHODS

Problem:

FBHP increasing during liquid accumulation

Group 1

- Hydraulic Pumps
- Beam Pumps
- Gas Lift
- ESP
- PCP

Group 2

- · Cycling
- Plunger Lift

INTERMITTENT METHODS

- Group 1 Expensive!
- Group 2 Cheaper methods!
- Periodic liquid load, higher abandonment pressure!

IMPROVED METHODS

Goals:

Avoid liquid accumulation on formation

extend applicable pressure and rate ranges

Keep it as cheap as possible:

- simple
- small unit cost
- no external energy

Source: Schlumberger, Oilfield Review, 2016

http://www.slb.com/-/media/Files/resources/oilfield_review/defining_series/Defining-Plunger-Lift.pdf?la=en&hash=5F6DB67DA02692B276CB493EFD1693BA23E2E754

Conventional Plunger Lift System

For usual loading

Pr ~ 50 bar L = 2000 m dc = 7 in dt = 3.5 in Qg ~ 26 000 m³/d Qw ~ 8 m³/d

Calculated Plunger Lift parameters (Foss and Gaul) Pcmin = 7,8 bar Pcmax = 10,2 bar Qw = 8,6 m³/d Qg req = 1400 m³/d

Theoretically: Until $Pr > \sim 12-14$ bar the well can be plunger lifted!

"IMPROVED" PLUNGER LIFT

Bypass pipe

Production through annulus Increasing Liquid Level in Annulus No backpressure!

Valve or Level control Opened at prescribed liquid level

Pressure difference between tubing and casing head Li

Valve Opened

Packer

Gas

Bypass

pipe

ead Liquid pressed to tubing

Pressure difference formed

Pt N Pc

Close the casing

Wait for req. pressure build up

Open tubing Plunger and liquid surfaced

Close tubing Open casing

"IMPROVED" PLUNGER LIFT "UNUSUAL" Sliding sleeve

Production through tubing to annulus

Increasing Liquid Level in Annulus No backpressure!

Valve and Level control Signal to Surface at prescribed liquid level

Close casing Wait for pressure buildup

Valve Opened at prescribed pressure Liquid equalised to tubing

25

"IMPROVED" **PLUNGER LIFT** "UNUSUAL" Plunger to the bumper **Open Tubing** Liquid and plunger to the surface Smaller depth, smaller req. pressure

JET PUMP "UNUSUAL"

Valve and tubing is opened at prescribed pressure

Liquid is pressued to Jet Pump through Dip Tube

Powerfluid is the accumulated gas

Liquid transported to the surface in small droplets

No moving Parts

CONCLUSIONS

Selection of the right unloading method is critical!

- Advantages:
 - Simple
 - Low cost equipment
 - No external energy required

Possible Good Choices

- Plunger Lift
 Convertional
 - Conventional
 - Improved
 - For unusual liquid loads
- Jet Pump with Produced Gas as Power Fluid

THANK YOU FOR YOU ATTENTION!