

Applied Technology and Best Practices in CEE

Conference

Budapest, 17 November 2011

Society of Petroleum Engineers

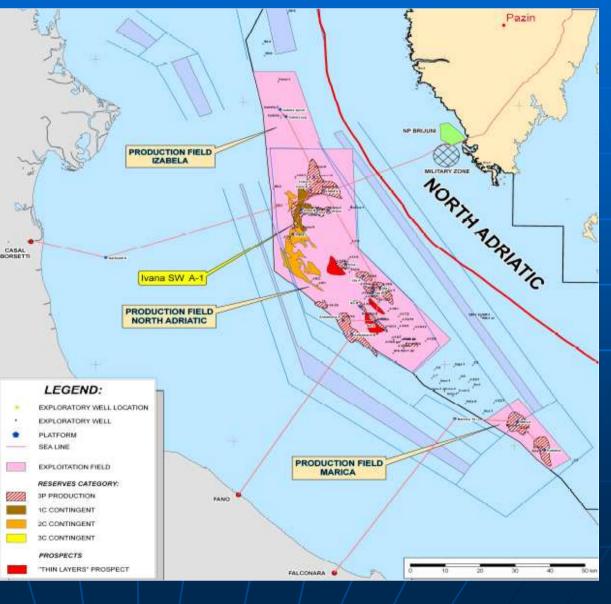
APPLIED TECHNOLOGY AND BEST PRACTICES IN CEE" 17th of November 2011 Budapest, Hungary

MODERN TECHNOLOGICAL APPROACH TO DRILLING AND COMPLETION OF PRODUCTION WELLS AT THE CROATIAN NORTH ADRIATIC OFF-SHORE GAS FIELDS

Authors:

Denis Čubrić, INA-Naftaplin, Drilling Specialist

Goran Lešković, INA-Naftaplin, Completion & Production Specialist


Željko Bolarić, INA-Naftaplin, Head of Drilling & Well Services Management

CONTENT

- Introduction
- Well Construction
- Well Completion
- Croatian Offshore Safety Regulations
- Conclusion

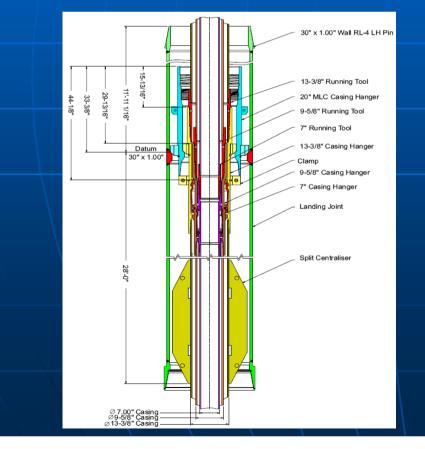
NORTHERN ADRIATIC FIELDS SITUATION MAP

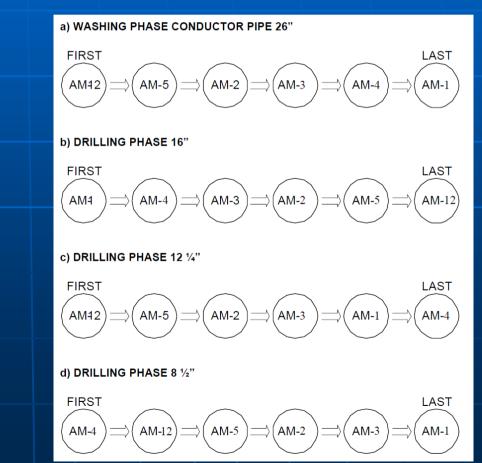
- INA's joint ventures
 - Inagip
 - Edina
- Start of development in 1999.
- Sea depth from 37 to 75 m
- 18 production platforms
- 46 production wells (40 slanted, 6 horizontal)
- 73 production strings
- Current production 5 M m³/day of gas
- 12 exploration wells (9 vertical, 3 slanted)

DEVELOPMENT PHASE JACK UP RIGS FLEET

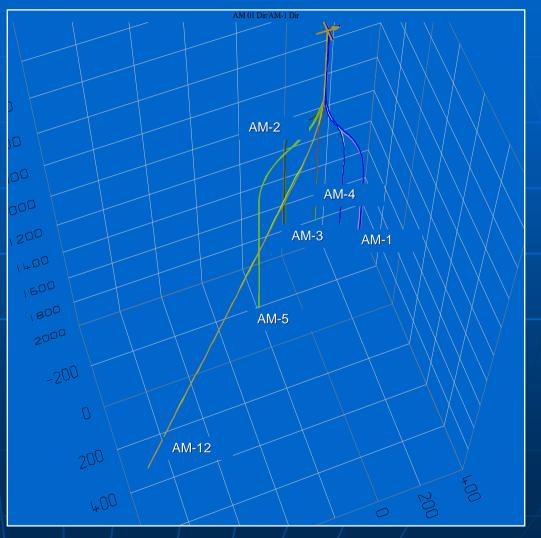
- J/U Rig Labin Crosco
- Levingstone 111-C
- Drawworks National 2000 HP
- Year of built 1985
- In operations up to 2003.
- J/U Rig Carl Norberg Noble
- Marathon LeTourneau 82-C
- Drawworks National 2000 HP
- Year of built 1976
- In operations 2005 2007.
 - J/U Rig Ocean King Diamond
 - Marathon LeTourneau Class 116-C
 - Drawworks National 3000 HP
 - Year of built 1973
 - In operations 2008 2010.

CONDUCTOR PIPE 26"/ 20"


- Driven before rig arrival after jacket instalation
- Penetration in sea bottom 50 m
- Washed by JU rig with 22"/16" bit


MUDLINE SUSPENSION

- System for temporary abandonment of explorative well (2-3 m above mud line)
- Tie-back and completion ones when production platform is installed


BATCH MODE DRILLING

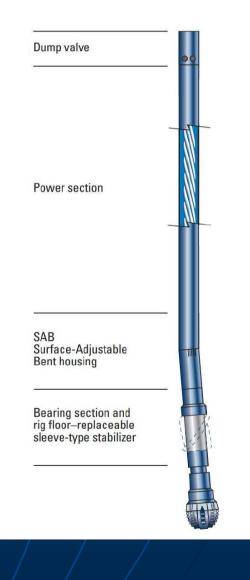
- Phase by phase drilling operations
- Time saving due to operations repetition
- Longitudinal and/or transversal skid of cantilever

WELL PLANNING

- Developing thick/thin sand layers and carbonates
- One to six wells per jacket
- Targeting up to 31 layers from the one jacket (Annamaria)
- Wells shape "S" or "J"
- KOP below 13 3/8" or 9 5/8" casing shoe
- Build up by PDM
- Hold/drop in 8 ¹/₂" section by steerable motor (PD)
- WL logging and/or LWD
- Water Base mud
- Inner string (surface csg) and Perkins method cementing

SURFACE CASING PHASE

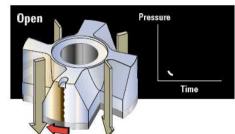
 Isolating the unconsolidated shallow formations, potentional gas lenses and water layers Lithology: sand, shale, lignite Preparing kill mud MW=1,4 kg/l Drilling16" phase with tricone bit Running FW-GE simple, easy to run mud MW=1,1 kg/l Setting 13 3/8" casing shoe at approx. 300 m Cementing by DP 5" inner string method stinged into casing shoe or collar (cem. slurry =1,98 kg/l) TOC at cellar deck (remedial cement job) M/U Wellhead and test at 40 bar

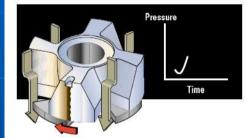

		Cum. Len. (m)
1	5" 19.50 DPG, 10% Wear	
	15 x 5" HWDP (15 joints)	222.99
A	Crossover	82.98
	1 x 8" DC	81.95
	Hydraulics Jar	72.97
	2 x 8" DC (2 joints)	63.12
	8 1/32" NMDC	44.29
H	UBHO Sub	35.26
	8" NMDC	34.23
	PowerPulse	25.23
	8-1/16" NM Pony DC	16.65
	8-1/16" NM Pony DC	13.59
	NM Float Sub	10.53
P	A962M5640XP (1.8 deg)	9.72
U	16" Bit	0.46

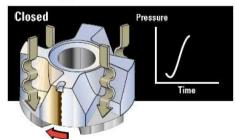
WELL CONSTRUCTION TECHNO	DLOGY		
APPROACH	5" 19.50 DPG, 10% Wear	Cum. Len. (m)	
INTERMEDIATE CASING PHASE	12 x 5" HWDP (11 joints)	215.32	
 Setting above well targets and below build-up section Lithology mostly shale with thin sand 	Hydraulic Jar	103.50	
layers	5 x 5" HWDP (5 joints)	93.88	
 Drilling 12 1/4" phase with tricone or PDC bit 	Crossover Circ. Sub	47.07 46.04	
 Running FW-LS low lime content, environmental friendly mud MW=1,15 	8 1/32" NMDC	45.12	
 kg/l Build up upto 6 deg./100 m using PDM Setting 9 5/8" casing shoe at 600 - 900 m TVD 	8" NMDC	36.09	
 Cementing by Perkins method with non rotating drillable plugs using two cem. 	PowerPulse	27.09	
slurries (1,5 kg/l and 1,8 kg/l)	8-1/16" NM Pony DC	18.51	
TOC at 100 – 150 m above 13 3/8" shoe	8-1/16" NM Pony DC	15. <mark>4</mark> 5	
 M/U Casing spool and test at 100-120 bar 	NM Float Sub 11 3/4 NM Stabilizer	12.39 11.58	
	A800M4553XP (1.5 deg)	9.17	
	12 1/4 " Bit	0.25	

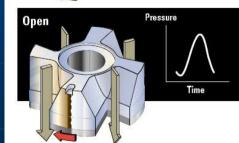
POWER PAK MOTOR

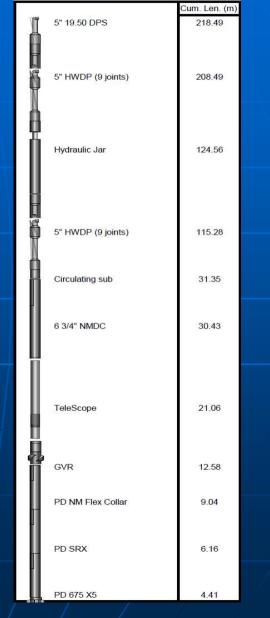
- Mud-lubricated bearings (M series)
- Variety of rotor/stator configurations (power, torque, speed, flow)
- Minimum interference with MWD
- Increasing ROP
- Reduce casing and bit wear

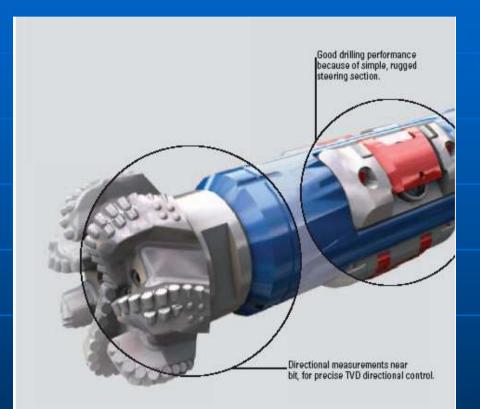



MWD POWER PULSE

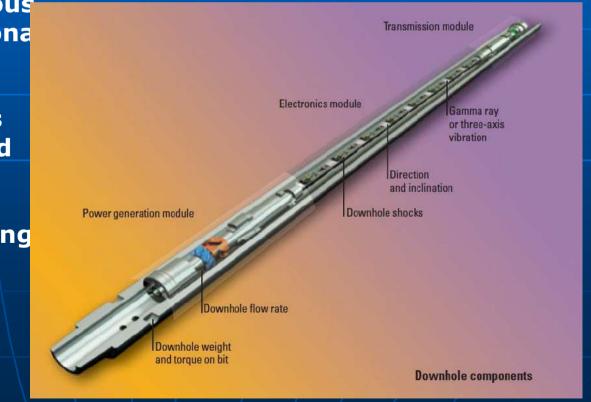

- Mud pulse telemetry tool that establishes the benchmark for reliability and data transmission rates
- Robust and reliable transmission in all mud types
- Continuous D&I measurements save rig time and minimize doglegs
- Data transmission rates of up to 16 bps provide high resolution, real-time logs
- Optional gamma ray sensor


PowerPulse

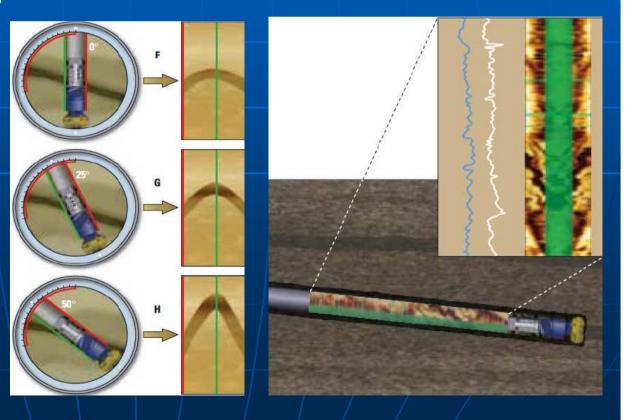



PRODUCTION CASING PHASE

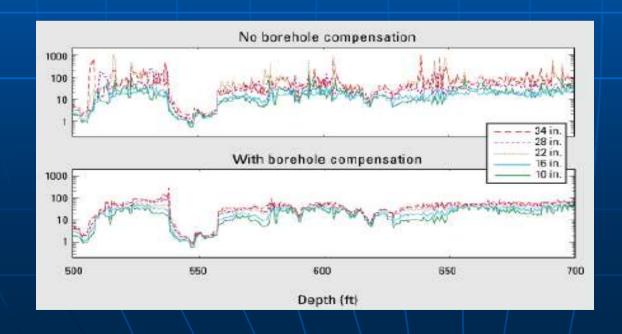
- Covering all predicted production intervals
- Lithology alternation of shale and sand layers
- Drilling 8 1/2" phase with PDC bit
- Running FW-PO-LU environmental friendly mud MW=1,25 kg/l
- Hold an angle (45-60 deg. "J" shape) or drop to vertical ("S" shape wells) using steerable motor
- Setting 7" casing shoe at TD 1400 2400 m MD
- Cementing by Perkins method with non rotating drillable plugs using one or two cem. slurries (1,5 kg/l and 1,7 kg/l)
- TOC at 200 m above 9 5/8" shoe
- M/U Tubing spool and test at 140-160 bar

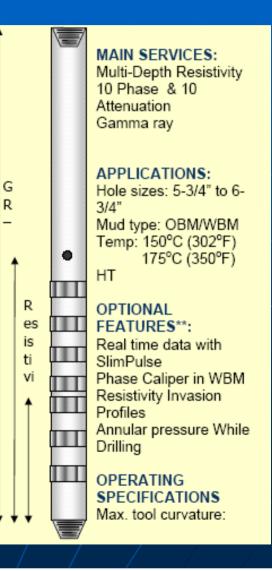

POWER DRIVE

- Push-the-bit system designed for full directional control while rotating the drillstring
- Accurate drilling and wellbore placement
- Near-bit measurements in real time
- Efficient downlink systems and automatic inclination hold
- Optional azimuthal gamma ray sensor


MWD TELESCOPE

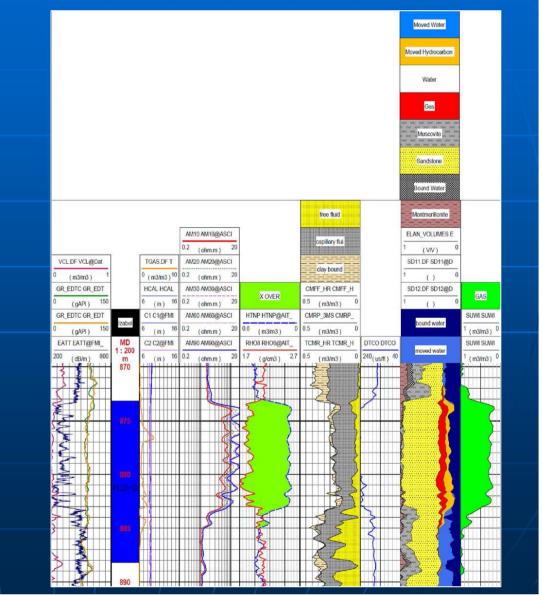
- Hi-speed telemetry while drilling system
- Ability to power and transmit data from multiple downhole tools
- Accurate continuous and static directiona and inclination measurements
- Real time updates on shock, flow and vibrations
- Date memory enables post drilling analysis


LWD GVR


- GeoVision Resistivity tool
- While-drilling visualization and dip interpretation of realtime
- resistivity imagesInteractive 3D
- visualization of borehole images along the well trajectory
- Possibility for resistivity at the bit monitoring in case of running w/o motor

LWD ARC VISION

- Array resistivity compensated tool
- Resistivity, gamma ray, inclination and annular pressure data
- Can withstand a high sand content and high mud flow rates which ensure maximum power transfer

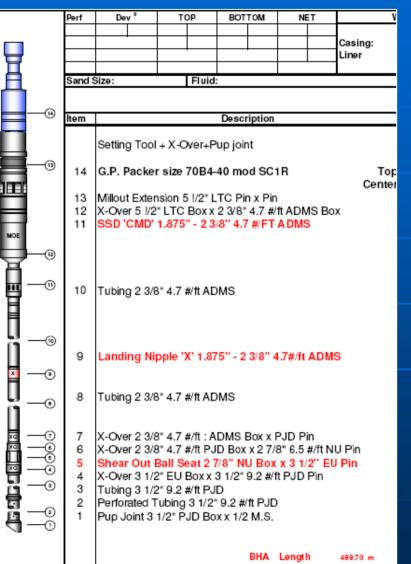


WL LOGGING

Quick look combined log

- Caliper
- Gamma ray nature radioactivity
- Resistivity
- MDT modular dynamic tester
- Neutron neutron porosity
- Density
- CMR combined magnetic resonance

WELL COMPLETION - GENERAL


- Dual & single completion 2 3/8";4,7#;L-80, P-110; ADMS, VamTOP (Izabela); IKA A-1 DIR 2 7/8"; 6,7#; L-80; ADMS
- Material used:
 - P-110 & L-80 (Ika & Izabela) for tubulars;
 - L-80, AISI 41XX, AISI 316, 9CR-1MO for DHE;
 - Nitrile, Viton & Teflon for sealing Items
- Wellhead & X-mass API material class D.D.
- Completion fluid brine CaCl₂; SG= 1,20

WELLS COMPLETION – PHASES GENERAL

- Open hole completion & isolation
- Well preparation for completion
- Sand layers overbalanced perforating (phase 2)
- Perforations back surging or
- TCP & back surging (phase 3)
- Frack & pack or high rate water pack gravel packing
- Well completion
- Well cleaning & testing

OPEN HOLE COMPLETION & ISOLATION – IKA CARBONATES

- GP packer, MOE, SSD (close up), "X" LN, shear out ball seat sub, perforated tubing, mule shoe guide
- Spotted 0,5 m Baracarb
- Shifting tool closes SSD when pooh setting tool
- Outside liner 5" cca 20 m in IKA A-2,3 HOR wells
- Inside casing 7" 0,5 m in IKA B-1 DIR well

WELL PREPARATION

- Clean fluid (20 NTU minimal) and working environment are mandatory for GP installation
- Typical well cleaning programme:
 - RIH taper mill & scraper
 - Mud conditioning and circulating
 - Push pill \rightarrow caustic pill \rightarrow acid pill \rightarrow neutralization pill \rightarrow sea water
 - Sea water displacement w/ 1,20 kg/l filtered CaCl₂ brine
- Cartridge & de filtering units used

PERFORATING

- Wire line conveyed casing gun in case of Frac & Pack
- 4 1/2"; 12 spf; 135/45°; DX; big hole charges
- Under overbalanced conditions of 1,20 kg/l filtered CaCl₂ brine
- Usually not noticed significant brine losses after perforating

PERFORATING & BACK SURGING

- TCP-DST in case of HRWP
- 4 1/2"; 12 SPF; 135/45°; RDX; Big Hole charges
- "Clean perforations" mandatory for effective HRWP gravel packing
- Cca 300 500 psi underbalance applied
- Pressure recorded downhole used for pressure build up analysis
- If some sand were recorded on the surface downhole valve were closed ASAP
- LCM pill spotted

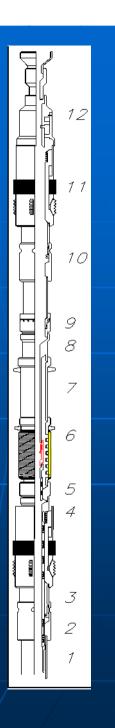
GRAVEL PACKING

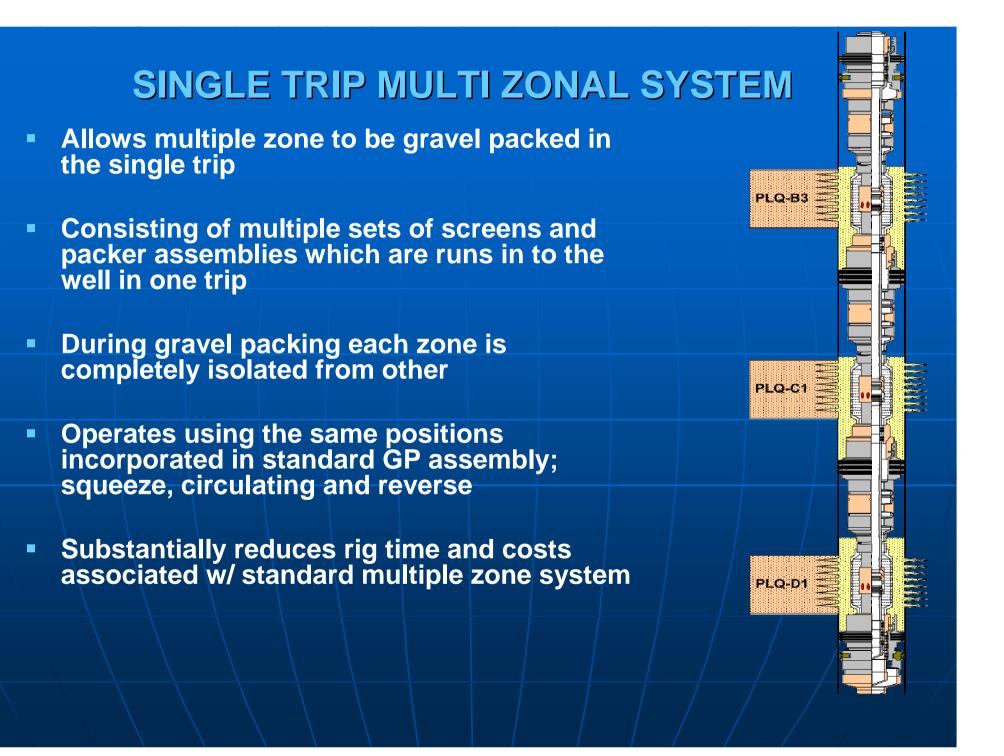
- Technique applied:
 - Alpha / Beta for horizontal open hole
 - Frack & Pack
 - High rate water pack
- Cased hole GP technique selection criteria:
 - Frack & Pack were preferred technique due to near wellbore skin bypass, vertical sublayers connectivity and turbulence effect reduction
 - Limitation factors were vicinity of free water and no existence of good barriers above and below the layer
 - For all other situations HRWP in combination w/ back surging were preferred technique

GRAVEL PACKING - FRAC & PACK

- "Econoprop" man made 30-50 US mesh propant used
- Non damaging 2,2 2,5% VES (Visco Elastic Surfactant) in sea water w/3% KCI as a carier fluid
- "Slim pack" prepacked screens 4" gauge 8

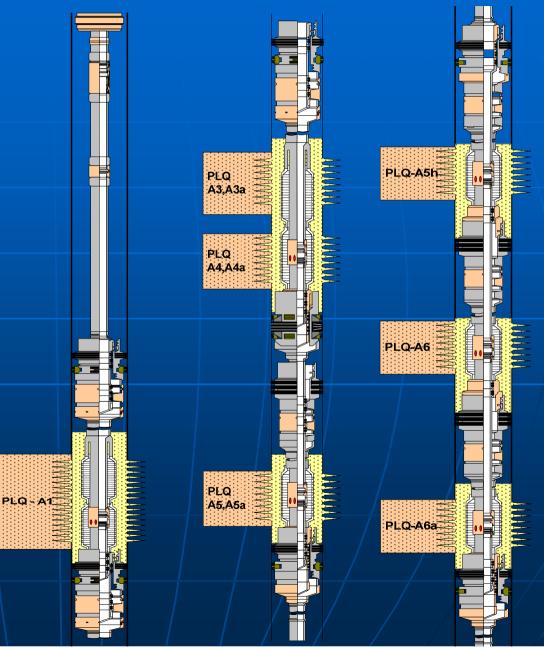
GRAVEL PACKING - HRWP

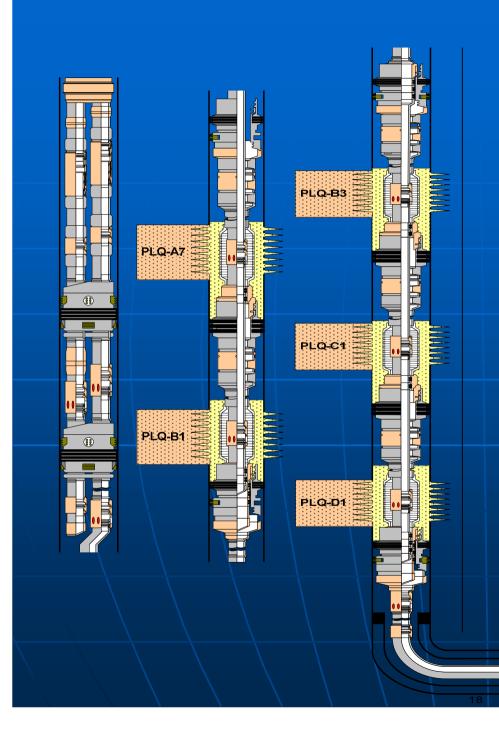

- Standard sand 40-60 US mesh used
- CaCl₂ 1,20 kg/l brine as a carrier fluid
- "Slim pack" prepacked screens 4" gauge 8
- Acid job w/ HCOOH 10% performed in case of LCM pill spotted after "back surging"


GRAVEL PACKING – HORIZONTAL OPEN HOLE

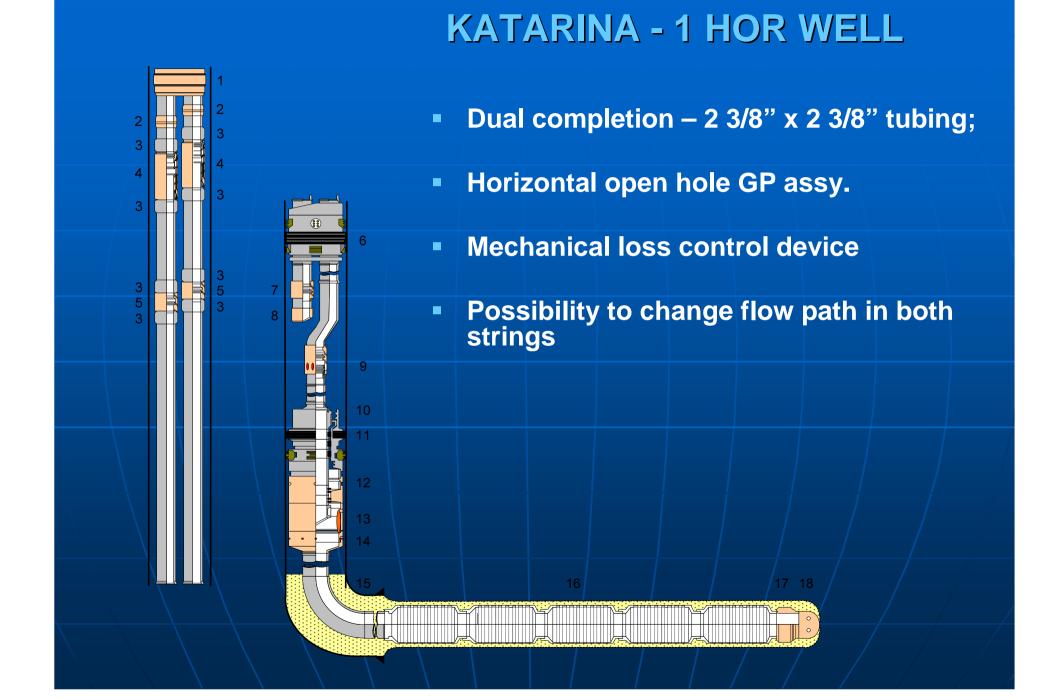
- Standard sand 20-40, premium screen fine mesh
- CaCl₂ 1,30 kg/l brine as a carrier fluid

DOUBLE PIN SUB


- Mechanical system for fluid loss control after gravel packing
- Using double pin sub inner string w/SSD (close up) is deployed w/GP assembly together
- Circulation during GP job is allowed through opened SSD
- Layer-SSD is closed w/ shifting tool when the crossover tool is pulled after the job
- Can be used for layer by layer aplication



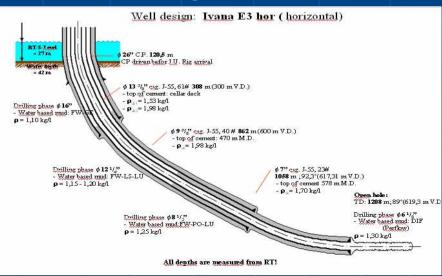
IKA A-1 DIR WELL


- Single selective completion –2 7/8" tubing; 2 3/8" GP assy
- Two zone multizonal system (PLQ-A8 – PLQ-A12)
- Three zone multizonal system (PLQ-A6A – PLQ-A6 – PLQ-A5H)
- Double pin sub used on layers PLQ-A4, A4A & PLQ-A3, A3A and layer PLQ-A1 completion

IKA A-2 HOR WELL

- Dual completion –2 3/8" x 2 3/8" tubing; 2 3/8" GP assy
- Possibility to change flow path in both ways (2 dual packers)
- Long string selective completion
- Three zone multizonal system (PLQ-D1 – PLQ-C1 – PLQ-B3)
- Two zone multizonal system (PLQ-B1 – PLQ-A7)

ANNAMARIA - 3 DIR WELL

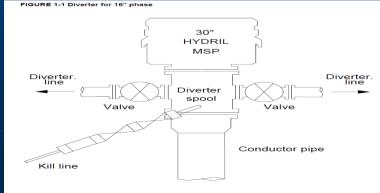

- Dual completion –2 3/8" x 2 3/8" tubing
- **2 double pin sub GP assy.**
- 2 spacers
- Long string selective completion
- F&P + 2 HRWP
 - Mechanical annular loss control valve (SAF)

WELL CLEANING & TESTING

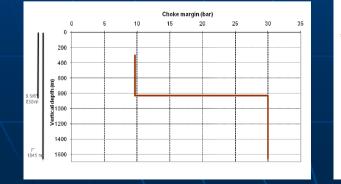

- After well completion tubing string had been pickled from the rust or grease using CT
- Layers were tested selectively manipulating w/ ssd, recording pressure and temperature on the surface and downhole for the carbonate reservoir
- In cases where Icm pills were spotted in front of the screens because of the losses after gravel packing, acid job before testing was performed w/ 10% HCOOH
- Results obtained from back surging (before sand control) represents real reservoir characteristic
- Results obtained from clean-up (after sand control) is characterized by lower productivity due to enormous loss of completion fluid, but with its fast recovery

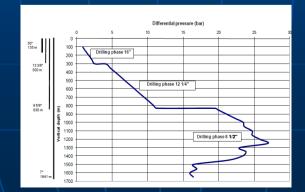
INA OFFSHORE WELL CONTROL ISSUES

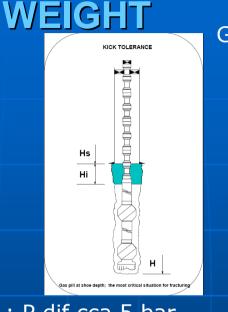
- Shallow gas policy
- Diverter configuration
- Kick tolerance, Choke margin
- Mud design, Cement slurry design
- BOP configurations for drilling & completion
- Well head compact / X- mass tree (dual string)
- Well control procedure
- P&A of exploration wells



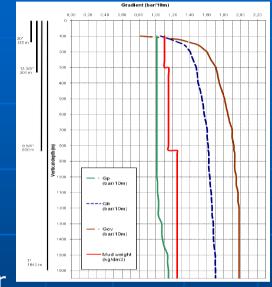
SHALLOW GAS POLICY / DIVERTER

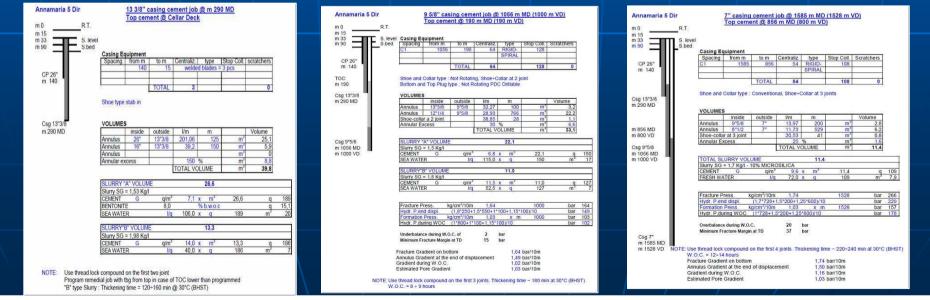

- For unknown area, sample coring within <u>site survey</u>, in pre phase is required to verify geomechanical mud line properties (for aft. legs penetration requirements)
- Exploration well / production platform position to avoid shallow gas - high amplitude anomalies up to 300m TVD; <u>shallow</u> <u>seismic is mandatory</u>;
- Conductor pipes 30" (for expl. wells) & 26" / 22" for production wells are required to be driven up to 30 – 50 m in mud line;
- In case of medium ampl. anomalies, pilot drilling Ø 8 ¹/₂" (prior drilling first hole of 16")
- Drilling phase Ø 16" w/Diverter system WP 1000/500 psi / 12" two lines w/hydr./pneum. valves; kill mud 1,4 kg/l in stand by
- Mud losses usually occurred below CP shoe (cement plug jobs)



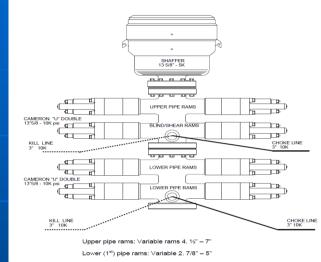

KICK TOLERANCE / CHOKE MARGINE / MUD

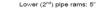
- Kick tolerance- calculator: bar/10m
 - Hole Ø 12 ¼" : max 11 m³
 - Hole Ø 8 ¹/₂" : max 13 m³
 - Hole Ø 6" : max 16 m³
- Choke margin:
 - Hole Ø12 ¼" : min 10 bar
 - Hole Ø 8 ¹/₂" : min 30 bar
 - Hole Ø 6" : min 60 bar
- Mud design:
 - Hole Ø16": FW-GE; 1,10 kg/l ; P dif cca 5 bar
 - Hole Ø12 ¼": FW-LS-LU; 1,15 kg/l; Pdif cca 11 bar
 - Hole Ø 8 ¹/₂": FW-PO-LU; 1,25 kg/l / reservoir drilling; Pdif up to 25 bar
 - Hole Ø 6": DIF; 1,25 kg/l / reservoir drilling / open hole-horiz.; Pdif up to 25 bar

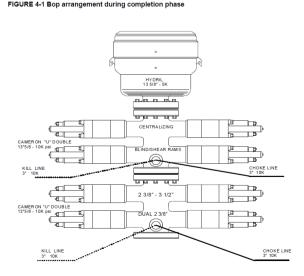




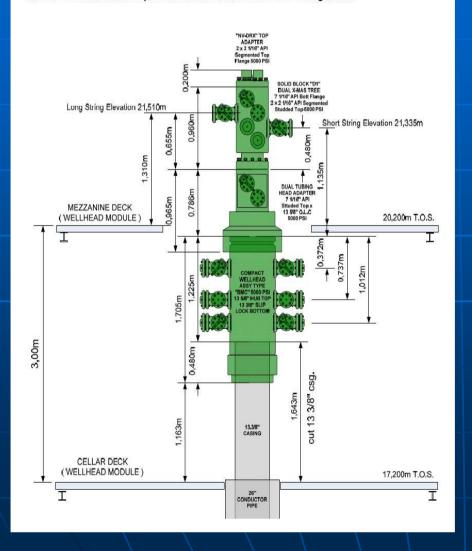
General: PPG=1,03-1,16

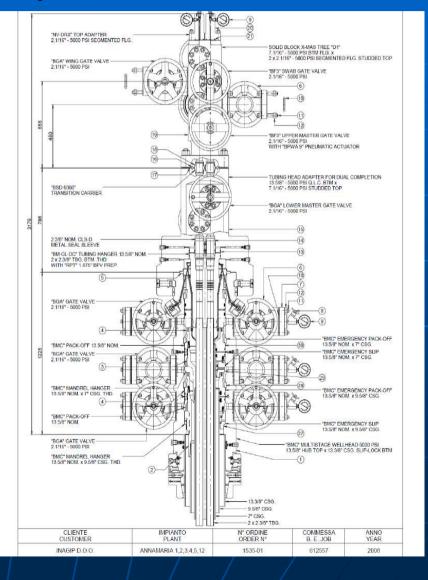

CEMENT SLURRY DESIGN


- Casing 13 3/8"up to 300m RT-VD:
 - For exploration well: TOC to cca 5 m below mud line; Lead cs =1,53 kg/l / Tail cs = 1,98 kg/l (sea water)
 - For production well: TOC to top of Cellar Deck ; same as a.m.
- Casing 9 5/8"cca 600 800 m RT-VD:
 - For exploration/production wells TOC up to 200m in previous csg;
 - Lead cs = 1,50 kg/l / Tail cs = 1,80 kg/l; 3% Microsilica (sea water);
- Casing 7" cca 700 1700 m RT- VD:
 - For exploration/production wells TOC up to 200m in previous csg;
 - Lead cs = 1,70 kg/l; 10% Microsilica (fresh water)


BOP CONFIGURATION

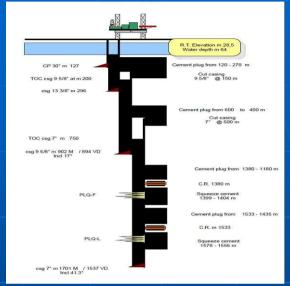
- In Drilling mode:
 - One Bag type preventer 5M
 - For Ram preventers (two double) 10M
 - Upper Pipe Rams : Variable 4"- 7"
 - Blind/Shear Rams
 - Lower Pipe Rams (1): 27/8" 5"
 - Lower Pipe Rams (2): 5"
- In Completion mode:
 - One Bag type preventer 5M
 - For Ram preventers (two double) 10M
 - Upper Pipe Rams : Centralizing
 - Blind/Shear Rams
 - Lower Pipe Rams (1) : 2 3/8" 3 1/2"
 - Lower Pipe Rams (2) : Dual 2 3/8"
- BOP test :
 - prior Drilling operations
 - on WH installation
 - every 14 days
- Accumulator Unit WP 3000 PSI, to meet requirement a.m. BOP configuration; function test; 2 remote panels (rig floor & rig supt. office)
- Casing test:
 - Bump plug at the end of cementing job
 - After WH installation w/BOP test

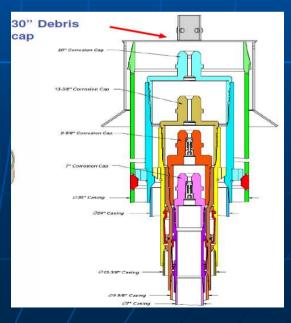



GURE 1-3 BOP Stack for 12 1/4" and 8 1/2" phas

WELL HEAD – COMPACT / X-MAS TREE (DUAL STRING)

FIGURE 3-28 Annamaria A platform wellhead and x-mass tree configuration


WELL CONTROL PROCEDURE



P & A – EXPLORATION WELLS

<u>Abandoning at the end of Drilling in case of dry well (OH)</u> (Permanent)

- Cover all permeable zones in OH (Ø 8 1/2") w/cement plug
- Set cement plug 150-200m above 9 5/8" csg shoe
- Cut 9 5/8" csg above TOC or 150m b. m.l.; Set surface cement plug : 320-120m
- Replace mud w/sea water
- Cut 13 3/8" & 30" CP cca 2-3m below mud line
- Abandoning tested levels in 7" csg:
 - For each tested level, set cement retainer & squeeze cement in perfs, set cement plug above cca 150m;
 - Cut 7" csg above TOC; set cement plug cca 200m, overlapping 7"csg & 9 5/8" csg per 100m;
 - Same as a.m.
- In case of MLS / Mud Line Suspension) : Temporary
 - Each tested interval : Bridge plug & Cement plug above cca 150m;
 - Set cement plug within 7" csg cca 150-200m;
 - Back off & POOH the MLS running tool 7"csg & RIH corrosion cap;
 - Back off & POOH the MLS running tool 9 5/8"csg & RIH corrosion cap;
 - Back off & POOH the MLS running tool 13 3/8""csg & RIH corrosion cap;
 - Back off / Cut cca 2-3 m above m.l. & POOH the MLS running tool 30"CP & RIH debris cap

CROATIAN OFFSHORE SAFETY REGULATIONS FOR DRILLING & COMPLETION OPERATIONS

* Regulations on main technical requirements, safety and protection during exploration and production of liquid and gaseous hydrocarbons from Croatian Offshore"; "Official Gazette" 05/10; 2nd edition

GENERAL FROM AUTHORITY APPROVAL :

- Main Mining Project for Offshore Drilling Rig by INA
- Main Mining Project for Well Operations by INA
- Environmental Impact Study by INA
- Concession licenses
- Well location permit

OPERATING COMPANY:

- Simplified Technical Project (Geological, Drilling, Well testing / Completion Programs)
- Emergency Response Plan (consider all Safety & HSE aspects for drilling & completion operations)
- All relations w/local marine authority
- **Drilling & Completion Fundamental, Policies, Guidelines (Manual)**
- Strictly follows Croatian Offshore Regulations

DRILLING CONTRACTOR COMPANY:

- Offshore Drilling Rig Safety Manual (fulfill all aspects of Safety & HSE procedures during drilling & completions operations)
- Strictly follows Croatian Offshore Regulations

CONCLUSION

IN DRILLING:

- Batch mode drilling for rig time saving
- Suspension the exp. well at mud line for future tie-back and completion
- Water base mud (Poly, Drill in fluid) w/environmental friendly additives
- High sophisticated directional drilling tools (Steerable rotary drilling systems, PDM, MWD, LWD)
- Newest generation of logging tools

IN COMPLETION:

- Dual completion system
- Carbonate isolation system (tail completion vs. upper sand layers to be completed)
- Gravel pack technique: horizontal OH, HRWP, Frack & Pack
- Multizonal gravel pack tool (mini beta system)
- Fluid loss control using double pin sub completion technique (long string) and SAF valve (short string)

...CONCLUSION

OVERALL:

- According to the well test results, all expected start-up gas rate per wells have been achieved
- Improvement of well productivity expected in first few months of production
- Ultimate recovery has increased as a function of number of developed reservoirs due to applied modern well technology
- In the same time, number of required wells enabled optimizing number and design of production platforms

THANK YOU FOR ATTENDANCE!

Questions?