

Energize the CEE Region Focusing Reliable Energy Security

Workshop

16-17 November 2023, Visegrád

Society of Petroleum Engineers

Review of modern Techniques in Carbonate and Sandstone Acid Stimulation

Edmund Eswein Stimulation Domain Champion Europe

Hungarian Section

- Matrix Stimulation Application Areas
- Carbonate Acidizing Case Study
 - Workflow Case Study
 - Well Performance Analysis & Creation of a Reservoir Model
 - Fluid Selection
 - Calibration of Acid-Rock Interaction & Advanced Acid Treatment Modelling
 - Implementation and Evaluation
 - Results
- Sandstone Acidizing
- Diversion Technologies

Carbonate vs. Sandstone Matrix Treatment

ACID STIMULATION - INTEGRATED WORKFLOW

Well candidate selection for stimulation (field analysis)

Reservoir and Rock Characterization

• 1. Formation Characterization

2. Damage Quantification

• 3. Damage Characterization

Treatment Design & Optimization

1. Optimize Volumes, Rates, Fluid Type

2. Optimize Placement (Diverters, Flow Path)

• 3. Optimize Treatment (Software Simulation)

Job Execution and Evaluation

Real-time job monitoring and evaluation

Carbonate Stimulation Candidate

Well Characteristics

- Vertical, openhole completed with preperforated Liner
- Losses of heavy weight OBM (Barite)
- PLT identified poor contributing zones despite good Reservoir Quality

Depth	>5000 m TVD	
Lithology	Limestone	
Hgross /net (m)	~ 50 m	
K (mD)	avg. 0.25 mD	
Pres i/cur (bar)	700 / 406	
Skin (recent WT)	- 1.8	
BHST (°C)	150°C	

Well Performance Analysis

- Nodal Analysis Well Model based on Well Test & known reservoir parameters / petrophysics / PLT
- Analysis of historical operating points after each intervention to evaluate well's response to interventions / stimulation attempts

➤ Valid Model for Production Prediction

Building a Reservoir Model

Core-based Poro-Perm Correlation

- High and low Permeability correlation derived based on core data from 2 wells,
- Different correlations below and above ~4% porosity

Permeability & Skin Profiles

- Poro-Perm derived profile is iteratively changed to match the average permeability from Well Test
- Skin & Damage Depth Allocation considering PLT & Petrophysics while honoring average skin from Well Test

Hungarian Section

Fluid Selection

Clean Up Fluids

Requirements:

- Breaking & Dissolution of OBM Filtercake
- Suspension and Transport of Remaining Mud Material

Selection:

- Oil-based mud cleaning fluid blend
- Mud & Silt Removing Acid System

Diversion Technology

Requirements:

• Minimum Damage

• Diversion Efficiency in High Permeability Contrast

Selection:

- Viscoelastic polymer-free Diverting Acid
- Solvent Pre-& Post-Flush

Fluid Selection -> High Temperature Carbonate

Single-Phase Retarded Acid (SPRA) Single-Emulsified Organic phase Chelants HCI Property / Acid Type Acids acid retarded acid Dissolution Retardation **Friction Pressure** Environmental Ease of use

Deep Penetration

Advanced Acid Treatment Modelling and Optimization

Chelant vs. Single-Phase Retarded Acid Comparison

Bullheading vs. CT + Bullheading

Acid-Rock Interaction Calibration

- XRD Test to understand Rock Mineralogy (>95% LS)
- Core Flow Tests to obtain specific PVBT values
- Verification of PVBT results through 3D Visualization of Wormholes

Production Forecast for different Stimulation Approaches

Case	Fluid	Deployment	Injection Mode	Skin	4500
А	-	-	-	- 0.2	(in 4000) 2500
В	Chelant	CT + Bullheading	Matrix	- 2.7	
С	SPRA	CT + Bullheading	Matrix	- 3.1	
D	SPRA + Diverter	CT + Bullheading	Matrix	- 3.28	Juoo- 500-
E	SPRA + Diverter	CT + Bullheading	Frac + Matrix	- 3.6	0- 150000 200000 250000 300000 350000 400000 450000 500000 550000 600000 Stock-tank gas at nodal analysis point (sm3/d)
F	SPRA	CT + Bullheading	Large Acid Frac	-4	Inflow: SKIN=-0.2 Inflow: SKIN=-2.7 Inflow: SKIN=-3.1 Inflow: SKIN=-3.28 Inflow: SKIN=-3.6 Inflow: SKIN=-4 Outflow: Operating Points

Implemented Operation

Nitrified CT CleanOut

- Clean annulus between openhole and slotted liner with minimum losses into formation
- Break and remove any residues to precondition the well for acid stimulation

CT Acid Matrix Treatment

- Targetted Acid & Diverter placement to access underperforming zones
- Alter injection profile favoring the main treatment efficiency and increase radial Acid Penetration (+25%)

Acid Bullheading

- Main Stimulation Treatment including Diverter to maximize Wellbore coverage and Acid Penetration
- Injection initially in Frac Mode, transitioning into Matrix Mode

Well performance before and after stimulation

Stimulation Campaign Results

Parameter	Well 1	Well 2	Well 3	Well 4	Well 5	Well 6
Total volume of acids pumped [*] , m ³ (bbl)	70.4 (442.8)	85.6 (538.4)	105.8 (665.5)	101.5 (638.4)	105.0 (660.4)	122.5 (770.5)
Target interval length, m (ft)	98.9 (324.5)	136 (446.2)	120 (393.7)	90 (295.3)	92 (301.8)	202 (662.7)
Maximum pumping rate, m3/min (bbl/min)	2.46 (15.5)	3.07 (19.3)	2.96 (18.6)	3.54 (22.2)	2.98 (18.7)	3.2 (20)
PI FOI	4.3	3.21	2.42	2.1	2.42	2.18

*Normalized for 15% HCl acid strength

SANDSTONE ACIDIZING – CHALLENGES & REASONS FOR FAILURE

- Inadequate damage characterization and fluid selection e.g. acid sensitive clays
- Complex secondary and tertiary chemical reactions
- Ineffective reservoir coverage, insufficient volume and lack of diversion
- Human error during the complex design and execution process

SINGLE STAGE SANDSTONE ACIDIZING FLUID

- Fluid system enables Single Step Operation
 - Lower Volume / Pumping Time / Resources
 - Low Precipitation Risk -> Low Risk of Failure
- Temperature range of 54-177 degC

Single Stage Sandstone Acid Treatment reduces Treatment Volume up to 50%

FLUID PERFORMANCE AT HIGH TEMPERATURE

Single Stage Sandstone Acid

Organic mud acid + acid pre-flush

Bandera gray core, 300°F, 10 PV main acid back pressure: 500 psi ; confining pressure: 2000 psi

Preflush: 10% formic acid, **5 PV** Organic Mud acid: 9/1 formic acid/HF, **10 PV**

CASE STUDY – NORTH AFRICA

Challenge

- ightarrow Boost Production from older well re-entry.
- ightarrow Produced ~ 100 bopd before decline and shut in in 2000
- ightarrow Quartzitic Sandstone with acid sensitive clays
- ightarrow Unsuccessful mud acid treatments

Solution

- ightarrow Low risk, high efficiency Single Stage Sandstone Acid
- $ightarrow\,$ Stimulation modeling using Kinetix Matrix

Results

- ightarrow Significantly increased injectivity post to pre acid stimulation
- → Early Production results show restoration of production to 170-180 bopd.
 Full production results pending (Update as of Feb 2023)
- $ightarrow\,$ Client is planning a larger campaign for the year

Degradable Particulate Diversion Materials

- Combination of degradable fibers and multi-modal particles
- Effective diversion for acid fracturing or matrix stimulations
- 4 different materials for BHT range is 130 to 350°F (54 to 177°C)

CASE STUDY – ACID FRACTURING

Clear Indication of Leakoff Control and Diversion

Surface pressure, stimulation cycle 1 Pumping rate, stimulation cycle 1

- Surface pressure, stimulation cycle 3
- Pumping rate, stimulation cycle 3

Fluid Flow Distribution, % of volume injected						
	Prejob Test	After First Diversion Stage	After Second Diversion Stage			
Upper interval 1	41	16	15			
Upper interval 2	5	3	22			
Upper interval 3	25	10	13			
Upper interval 4	6	7	2			
Upper interval 5	23	64	35			
Lower interval	0	0	13			
Total	100	100	100			

Challenge ٠

Economically stimulate oil production from • an offshore horizontal well through a hot carbonate formation

Solution

- OpenPath Sequence service with two diversion stages
- Results •
 - Increased productivity index by >300% •
 - Boosted oil production by 243% •

Thank you!

