

LABORATORY MODELING SYSTEM FOR UNDERGROUND GAS STORAGE

József SUBERT¹, Károly JÓNAP¹, Csaba VÖRÖS¹, Péter KALOCSAP² 1 – University of Miskolc Research Institute of Applied Earth Sciences, 2 – MOL Hungarian Oil and Gas Company Plc.

> Applied Technology and Best Practices in CEE Conference Budapest, 17 November 2011

Society of Petroleum Engineers

Gas Reservoir Rock Core Test Tasks

R&D activities

□ We prepared the analysis method specifically designed for injection and withdrawal cycles.

□ We planned and prepared the equipment applicable for modeling of injection and withdrawal cycles.

□ We performed sand production tests using rock samples from wells SzGT-4 and SzGT-19, 120-180 bar pressure rate, 250 bar rock load, 93 °C temperature.

□ We analysed the measurement results gained from this modeling.

Model Apparatus Specification

250 bar

120 °C

120-180 bar

Main parameter:

Pressure max.: Operational pressure: Temperature max.: Operational temperature: Rock load: Flow rate: Flow rate (higher):

Core: Pipe:

93℃ ÷100 ℃ 250 bar 63 bar/30 min – about 10 In/min 30 In/min

1"x50...60 mm Ø6/4 mm

Test Method Flow rate calculation

The measurements of flow conditions before the test equipment are arranged so that the pressure change in terms of resale value was 63 bar/30 min.

Well yeald (source: MOL Nyrt.)

8 m average thickness and 450 em³/day flow rate; 6 m effective thickness , 400 em³/day flow rate.

Inflow on surface

 1st version:
 7,02 m²;

 2nd version:
 5,26 m².

Flow rate

at 5 cm² core surface: 22,26 ln/min or 26,41 ln/min.

Model Apparatus P&ID

Investigate Schedule Tested methode

- 1. Drying of rock sample on 60 ℃, over 48 hours
- 2. Photographing the rock samples
- 3. Measurement of the mass of the samples
- 4. Heating and temperature set (4 hours).
- 5. Pressure position to 120 bar (rock pressure 250 bar).
- 6. Permeability measuring.
- 7. Compressor pressure set to 180 bar
- 8. Flow rate set to 30 In/min
- 9. Stop measuring at 180 bar
- **10. Pressure holding for 5 min**
- 11. Recirculation from 180 bar to 120 bar with constant rate flow
- 12. The cycle repeats 40 times
- **13. Drying of rock sample**
- 14. Measurement of the mass of the samples

Measurement of the Mass of the Sample

Moduls of Apparatus CAD design and up to date control system

Hassler holder in cell
Controlled valve
Monitoring by PLC
Data base on computer
Remote desk by WEB server
HMI on website

Model Apparatus Apparatus in laboratory

Oven with Core Holder

Control System Mitsubishi FX1N PLC and magnetic valves

PLC Program Modules Mitsubishi FX1N ladder diagram

Human Machine Interface Supervisory and Acquisition system

Core data Rock sample parameters

Core No.	Well No.	Depth	Density	Porosity	kL equivalent	Diameter	Length
		[m]	[g/cm3]			[mm]	[mm]
3	SzGT-32	1821,27-1821,40	1,90	0,2879	708,08	24,80	51,00
5	SzGT-32	1824,18-1824,30	1,84	0,3188	1567,719	24,70	51,00
9	SzGT-32	1825,21-1825,35	1,87	0,3074	608,471	24,60	50,00
12	SzGT-32	1826,28-1826,40	1,83	0,3084	438,307	24,80	51,00
13	SzGT-32	1826,83-1826,94	1,81	0,3322	788,969	24,60	44,40
18	SzGT-32	1827,30-1827,40	1,74	0,3357	930,823	24,80	44,20
1.7.1.B	SzGT-2	1838,54-1898,74	1,76	0,3456	1408,111	24,90	50,70
1.7.2.B	SzGT-2	1899,00-1899,19	1,87	0,3231	601,889	24,90	50,00
1.7.3.B	SzGT-2	1900,46-1900,64	1,84	0,3057	1460,607	25,10	51,10
2.3.2.A	SzGT-2	1913,64-1913,75	1,76	0,3281	1424,698	24,80	45,00
2.3.3.B	SzGT-2	1916,73-1916,90	1,71	0,3488	3819,226	24,30	50,40
2.3.4.B	SzGT-2	1917,42-1917,59	1,67	0,3592	4490,258	24,10	50,30

Cycle diagram Measurement results

Results on 3D diagram

Results on 3D diagram

Results Core mass results – 40 cycles

Core No.	Well No.	Core mass	Mass with	Rubber mass	Core mass	Mass with	Mass change	Mass change
		[g]	[g]	[g]	[g]	[g]	[g]	[%]
3	SzGT-32	46,7630	91,4258	44,6628	46,6352	91,2980	-0,1278	-0,2733
5	SzGT-32	45,0228	88,9076	43,8848	44,8004	88,6852	-0,2224	-0,4940
9	SzGT-32	44,5177	89,8943	45,3766	44,4114	89,7880	-0,1063	-0,2388
12	SzGT-32	45,1735	89,2551	44,0816	45,0060	89,0876	-0,1675	-0,3708
13	SzGT-32	38,1692	78,8808	40,7116	38,0640	78,7756	-0,1052	-0,2756
18	SzGT-32	37,1903	82,9185	45,7282	37,0825	82,8107	-0,1078	-0,2899
1.7.1.B	SzGT-2	43,3428	88,0058	44,6630	43,2119	87,8749	-0,1309	-0,3020
1.7.2.B	SzGT-2	45,5516	90,4542	44,9026	45,0494	89,9520	-0,5022	-1,1025
1.7.3.B	SzGT-2	46,3985	92,1220	45,7235	46,2749	91,9984	-0,1236	-0,2664
2.3.2.A	SzGT-2	38,2689	82,0046	43,7357	38,1222	81,8579	-0,1467	-0,3833
2.3.3.B	SzGT-2	40,0036	84,6959	44,6923	39,3632	84,0555	-0,6404	-1,6009
2.3.4.B	SzGT-2	38,3335	84,3246	45,9911	-	-	-	-

Results Changes in pressure during the 40 cycles

No	PT-3 (1.c) [bar]	dp (1.c) [bar]	PT-4 (40.c) [bar]	dp (40.c) [bar]	dp [%]
3	171.3	0.27	171.3	0.263	97.41
9	172.3	0.22	172.8	0.213	96.82
12	171.6	0.27	171.3	0.271	100.37
1.7.1.B	169.6	0.215	169.6	0.208	96.74
2.3.2.A	170.3	0.171	170.3	0.207	121.05
2.3.4.B	-	-	-	-	-

Results Real permeability (170 bar)

No	In/min	PT-3 [bar]	d	dp	m	I [cm]	v [cm/s]	k [d]
3	35,51	170,8	2,48	0,268	0,0218	5,10	0,717693	0,297735
9	21,88	170,6	2,46	0,245	0,0218	5,00	0,449963	0,200188
12	26,25	169,3	2,48	0,153	0,0218	5,10	0,535239	0,388941
1.7.1.B	29,88	168,3	2,49	0,197	0,0218	5,07	0,607963	0,341095
2.3.2.A	32,5	170,1	2,48	0,194	0,0218	4,50	0,659561	0,33352
2.3.4.B	-	-	2,41	-	0,0218	5,03	-	-

$$k[D] = \frac{v[cm/s] \cdot m[cP] \cdot l[cm]}{dp[bar]}$$
[1]

$$v[cm/s] = \frac{4000 \cdot q[\ln/\min]}{60 \cdot p[bar] \cdot d[cm]^2 \cdot \pi}$$
[2]

93 °C-on:
$$m = 0,0218 \ cP$$
 [3]

Summary

General

Measurements

- The equipment and the measuring principle has been established, then the unit transformed the experience, as expected.
- □ The test method and the device works well in practice, be used.
- □ The rock cores, each lost in the mass region (below 1 wt%).
- □ The unstable structure of rock core was cause the measurement eliminate.

Rock stability measurement at 5,5 In/min flow rate. Rock stability with 40 cycle at 30 In/min average flow rate.

Thank you for attention