

Primary funding is provided by

The SPE Foundation through member donations and a contribution from Offshore Europe

The Society is grateful to those companies that allow their professionals to serve as lecturers

Additional support provided by AIME

Society of Petroleum Engineers Distinguished Lecturer Program www.spe.org/dl

The Science and Economics of Multiphase Flow

Mack Shippen Schlumberger

Society of Petroleum Engineers Distinguished Lecturer Program www.spe.org/dl

Outline

- Introduction

- The Science of Multiphase Flow
- The Economics of Multiphase Flow
- Concluding Remarks

A Broad View of Fluid Mechanics

Outline

- Introduction
- The Science of Multiphase Flow
- The Economics of Multiphase Flow
- Concluding Remarks

Liquid Holdup

- Function of the degree of gas-phase slippage
- Gas travels faster because of lower density and viscosity
- Higher mixture velocity \rightarrow less slip

Pressure Losses

Terrain effects are important! pressure losses uphill are only partially recovered going downhill

Evolution of 1D Steady-State Multiphase Models

SPE DISTINGUISHED LECTURER"

3-Phase Mechanistic Flow Models

- Based on combined force and momentum balances and best represent the physics of multiphase flow
- Account for broad ranges of fluids and pipe geometries
- Top 3 (State-of-the-Art) include OLGAS, LedaFlow and TUFFP

Oil-Water Flow

6-inch pipe 1500 BOPD 1500 BWPD 1.5 cp oil

Oil-water flow experiments in 6-in.-diameter pipe (oil shown with red dye and water with blue dye). Each case has identical volumetric flow rates: 1500 bpd of each phase. The lefthand image shows upward flow inclined at θ = +2 ° (from the horizontal). The center image shows horizontal flow $\theta = 0^{\circ}$, while the righthand image shows downward flow inclined at θ $= -2^{\circ}$ (from the horizontal). We observe that in the left-hand image, oil "slips" much faster over the water. In the center image, we have nearperfect stratified flow with no discernible slippage between phases, while in the righthand image, we observe water rapidly slipping beneath the oil. These experiments clearly show how even a small inclination in pipe elevation can have a dramatic effect on slippage and associated flow regimes.

Can generally expect +/- **10**% Error in Accuracy of Holdup and Pressure Predictions for conditions of:

- Stable Flow < Operating Rate < Erosional Limits</p>
- Deviation angles ±10^o of vertical or horizontal
- Liquid volume fractions > 10%
- Water <u>or</u> oil fraction < 10% relative to total liquid</p>
- Pipe diameters < 10 inches</p>
- Oil viscosities < 10² centipoise

Multiphase Flow Research Centers

University of Tulsa (TUFFP), US

Top 5 R&D Challenges

1. 3+ Phases

2. Odd Angles

3. Exotic Fluids- Heavy Oil

- Foam
- Slurries

4. Improved Closure Relationships

5. Model Discontinuities

Outline

– Introduction

- The Science of Multiphase Flow
- The Economics of Multiphase Flow
- Concluding Remarks

"Economics is the study of the use of <u>scarce</u> <u>resources</u> which have <u>alternative uses</u>"

- Lionel Robbins

Examples

Example	Description
1 - Offshore Field Planning	Offshore Oil
2 - Slug Catcher Sizing	Offshore Gas Condensate
3* – Terrain Effects	Onshore Shale Oil
4* – Heavy Oil Pipeline	Onshore Heavy Oil

* Backup example for onshore focused audiences – see supplemental slides

Example 1: Offshore Field Planning

Example 1: Optimal Platform Size

Time

Oil Production Capacity

SPE DISTINGUISHED LECTURER"

Example 1: Integrated Modeling

Example 1: Dealing with thru-life constraints

Example 1: Gas Lift Optimization

Total Gas Lift Injection Rate

Numerous published field studies have shown gas lift optimization to improve production by 3-15%

Example 2: Liquids Handling for Offshore Wet Gas Export Pipeline

Onshore Slug Catcher

Example 2: Pigging a Flowline

Why?

- Remove solids > reduce blockage risk
- Remove liquids > less pressure loss

Size of slug proportional to gas-liquid slip

Example 2: Ramp-Up Surge

Size of surge proportional to difference in liquid content before and after

Outline

- Introduction
- The Science of Multiphase Flow
- The Economics of Multiphase Flow
- Concluding Remarks

Concluding Remarks

- Good technology in multiphase flow modeling has emerged from years of research and development
- Challenges still remain → flow assurance is not a certainty
- Economics justify the Science!
- Ultimate goal is to maximize production while minimizing flow assurance risks and operational costs

An Integrated View of Fluid Mechanics

Your Feedback is Important

Enter your section in the DL Evaluation Contest by completing the evaluation form for this presentation Visit SPE.org/dl

Society of Petroleum Engineers Distinguished Lecturer Program www.spe.org/dl

Supplemental Slides

Flow Assurance – Getting it Right

- Deepwater development ~ \$3-10B
- Subsea infrastructure ~ \$1-3B
- Slugcatcher ~ \$30M
- Subsea booster ~ \$250M

Onshore Slugcatcher

Subsea Booster

Example 1: ESP Optimization

Uncertainties

Variable	Values		
Flow models	 OLGAS 7.3 		
	 LedaFlow 1.4 		
	 TUFFP 2015.1 - Baker IFF 		
	 TUFFP 2015.1 - Bendiksen IFF 		
	 TUFFP 2015.1 - Kowalski IFF 		
	 TUFFP 2015.1 - Vlachos IFF 		
Terrain effects	 Low: Terrain Index 1:0 (slope:shelf) 		
	 Med: Terrain Index 3:1 (slope:shelf) 		
	 High: Terrain Index 5:2 (slope:shelf) 		
Equation of state	 Cubic Plus Association 		
	 Peng Robinson 		
	 Soave Redlich Kwong 		
Liquid Gas Ratio (LGR) range	 15 BBL/mmscf +/- 10% 		
Pipe roughness	 Low: .001 inch 		
	 Med: .0018 inch 		
	 High: .0026 inch 		
Soil conductivity	Low: .462		
	 Med: .568 		
	 High: .693 		

Deterministic Analysis

Probabilistic Analysis

ramp-up

pigging

Example 2: Slug Catcher Sizing Economics

80000 \$110.5M 70000 (BBL) \$95.6M 60000 \$86.1M VOLUME \$75.2M 50000 40000 \$57.5M REQUIRED 30000 \$40.3M 20000 10000 0 P-10 **P-50 P-90** pigging ramp-up

Required Slug Catcher Size

Example 3: Simple Pressure Drop Calculation

GOR = 5000 scf/STB 45° API Gravity QL = 1000, 100 BPD

5 mile, 4" flowline

500 psia

<u>Your Job:</u> Calculate the required inlet pressure!

Example 3: Terrain Effects

Terrain effects (+/- 4° from horizontal)
 Absolute difference (Net - 0.14°)

Example 3: Results – Pressure Loss

Takeaway: Terrain Effects Critical For Low Rate Cases!

Example 3: Results – Liquid Holdup (OLGAS)

SPE DISTINGUISHED LECTURER"

Example 3: Results – Pigging Volumes

Example 3: Just Part of the Network!

Example 4: *Inspiration* The El Morro → Araguaney Pipeline

Example 4: Heavy Oil Pipeline

Example 4: Diluent Injection – 5.7" pipe

~10,000 cp

Example 4: Diluent Injection – 7" pipe

SPE DISTINGUISHED LECTURER"

Example 4: Pipeline Economics

Method	Effect	Constraints	OPEX	CAPEX
Pump	$ \begin{array}{l} \uparrow \text{ pressure} \\ \leftrightarrow \text{ friction loss} \end{array} $	MAOP Power	\leftrightarrow Med	↑ High
Diluent	\downarrow viscosity \downarrow friction loss	Diluent availability Power	↑ High	\leftrightarrow Med
Larger Pipe size	↓ velocity↓ friction loss	Phase of development	↓Low	↑ High
DRA	↓ turbulence ↓ friction loss		\leftrightarrow Med	↓Low

- **MAOP** = Maximum Allowable Operating Pressure
- **DRA** = Drag Reducing Agents
- **OPEX** = Operating Cost
- **CAPEX** = Upfront Capital Cost

Flow Assurance - Solids Problems

Multiphase Flow Design Tasks

S21

Common Flow Assurance Workflows

Key:

Full Transient	Ramp-up Surge Pigging volumes Hydrodynamic Slugs Terrain Slugs Severe Riser Slugs Slugtracking	Hydrate Prediction Hydrate Kinetics/ plugging Wax Prediction Wax Deposition	CO2 Corrosion (SS) Erosion (SS) Leak/Blockage Detection	Shut-in (Cooldown) System Start-up Depressureization	Liquid Loading Gas Lift Unloading Worst Case Discharge (Blowout) Artificial Lift Diagnostics Well Testing Wellbore Cleanup
Steady- State (SS)	Ramp-up Surge (Cunliffe's Method) Pigging volumes Hydrodynamic Slugs Terrain Slugs Severe Riser Slugs	Asphaltene Prediction Hydrate Prediction Scale Prediction Wax Prediction Wax Deposition	CO2 Corrosion Erosion Leak/Blockage Detection		Nodal Analysis Liquid Loading Gas Lift Unloading Worst Case Discharge (Blowout) Artificial Lift Diagnostics
	Liquids Handling	Solids	Pipe Integrity	Shut-down/Start-	UN Wall Specific

Application

Basic Detection Good Approximation Rigorous