

Energize the CEE Region Focusing Reliable Energy Security

Workshop

16-17 November 2023, Visegrád

Society of Petroleum Engineers

Exploration results, challenges and solutions of Nyékpuszta HPHT gas-condensate field, SE Hungary

<u>Viktor Lemberkovics¹</u> Endre Dombrádi² Károly Kiss¹ Tamás Szakál¹ Gábor Bada²

¹ MVM CEEnergy Zrt. ² TDE-Aspect group

Unconventional HC E&P in Hungary – the reasons

Image source (3)

Image source (3)

Limited running room to discover "significant" conventional resources, but increasing pressure for HC supplying stability (war, economical crisis, instable geopolitical situation) \Rightarrow intensify domestic E&P \Rightarrow focus on unconventionals.

✓ > 300 HC field and > 2.9 billion barrel oil equivalent (bboe) reserve to date

✓ >2.4 bboe is produced, cca. 2/3 gas, 1/3 liquid HC dominantly from **conventional reservoirs**

✓ Most significant discoveries were happened at 70's!

Domestic production is slightly increasing (oil $\hat{\mathbf{1}}_r$ gas ↓) but today cca. 75-80% of HC is imported

Resource triangle (HOLDITCH 2013)

2.) http://www.necanews.org/dev/documents/090922 pflug gerhard 1.pdf 3.) http://energy.usgs.gov/factsheets/Petroleum/reservoir.html#fig2

Hungary – "Adaptation of US analogies"

Extensive exploration efforts from 00's

 Economically limited success so far – Beru, MOL & Zala basin, Slovenia

TDE/Aspect – MVM CEEnergy 2021: joint venture for Békés basin – Corvinus project

Corvinus – original geological model

- Model was called "pervasive gas accumulation" in tight reservoirs
- Dominantly seismic model calibrated with 1 well – Nyek-2

 Presence of good quality gascondensate rich petroleum system

Corvinus – geological model 2022

Several reprocessing campaigns

Value of "anomalous" seismic reflectors

Nyék-6A as proper calibration point

Planned exploration and development wells

Corvinus – current geological model

Idealized geological section acroos the structural apex of Nyékpuszta HC field 7 (plan) 13* 6A

> Full 3D coverage, 2+3 wells >>500 m* rich gas saturated total thickness, HPHT Structurally inverted, further downdip potential

2.50

2.60

2.701-

280 **(s)** LML

3.20

* Based on mudlogs, petrophysical evaluation, well tests and production

visualization purpose! 7

The polygon is only for

12.3 km²

Bad-S reservoir – full stack amplitude attribute map

Corvinus – current geological model

- 1-30 m thick tuffaceous sandstone, sandy tuff reservoirs => the main ones are seismically identifyable
- Various porosity (6-25%!), but low permeability (<0.1 mD)</p>
- High gas saturation (55-70%) of pay zones

□ Uncertainties?

Challenges of information gathering

Wireline + Mudlogging

 Limitied tool availability - HPHT
 Limited tool selection - not developed (NMR, FMI, etc) **Mudlogging + Wireline**

Oil based (NADF) barite weighted mud (>2 kg/dm³)

Cuttings like "the sea of dilute shit" (after Ford Fairlane ©)

9

Masterlogs Nyék-6A & -13

Cuttings

organic

diesel)

Gaslogs

Lithology and

by cleaning

(typically with

Oil based mud is

changing drilled

typical drying

analysis is

Mitigation?

gas composition -

effect \Rightarrow gas ratio

practically useless

geochemistry are

strongly affected

A service of the serv

and an and a second second

CITE INVERTIGATION OF

STATISTICS AND TO BE

Constant E. 2019 Physical States and State

Nyék-13

Challenges of mudlogging

Gas ratio analysis - Nyék-2 & -6A

Mitigation of mudlogging problems

Conventional coring

Microcore bit

Lithology, organic geochemistry and petrophysics

- Conventional coring expensive but a must
- Microcore bit Beru

 Organic geochemistry and technological evaluation
 Usage of Isotube gas samples
 Not for composition, but for δ¹³C measurements - under testing

- Maturation, biogenicthermogenic
 - components
 - Commingled
- production ratios
- Etc.

Sampling of mudgas - Isotube

Graph of berner and faber model

Calibration points: gas and condensate samples from test / production

This is not pálinka! 11

Challenges of wireline logging

Above the mentioned pT and mud related issues

Recurring borehole stability problems \Rightarrow significant OH data $loss \Rightarrow information value of$ replacement CH logs is limited **Improper wireline tool set for** state of art lithological and saturation evaluation \Leftrightarrow volcanoclastic sediments! **Conventional log set is** measurable ⇔ unconventional condition!

Mitigation?

Mismatch

between

and

tuff

Lack of

data

saturation

Post o Well Nyek-

Nyek-

Nyek

Nyek

mudlogging

computed

lithology -

	9.00		
peration analysis			
-	Section 🔹	Reason	Result
6A	17 1/2" OH	Improper borehole condition	Information/data loss from the bottom part of the section
6A	8 1/2" OH	Improper borehole condition	Openhole information/data loss from the main Bad- S target. Extra cost to acquire cased hole logs.
-8	12 1/4" OH	Improper borehole condition	Additional run, extra cost for wireline and rig time.
-8	8 1/2" OH	Improper borehole condition. Despite a whipstock was near the obstruction it does not look to cause the problem, as well as the inclination of the hole remained low	Additional runs, unsuccessful. Almost the complete openhole information/data lost in the 8 1/2" section. Extra cost to acquire cased hole logs. Effect on furter development of borehole/project.

and no sudden changes in that.

Mismatch

between

computed

lithology -

Lack of

data

openhole

and

tuff

Applied SLB NeoScope tool

– PNG Monitor ~ Sigma

[∼] Spectroscopy [∼] Neutron Density [∽] Neutron - Resistivity

Mitigation of logging problems

Solution for borehole problematics (stability)
Use LWD technique instead of Wireline avoiding sticking - <u>LWD was used in Nyék-13</u> as washdown run after drilling
Could use conventional tools - cooling with circulation (\$\$\$)

Solution for tool selection ✓ LWD contained elemental capture spectroscopy ⇒ mineral composition and lithology

Results

— Inclinometer — ROP — Pressure — GR

X-Over

Bit Sub

— S&V

- UltraSonic

No borehole condition issue Additional state of art tool for lithology – heavy mud is still an issue

Future

 LWD usage during drilling?
 More specific tools for formation evaluation (FMI in OBM, NMR, etc)

Conclusions

- Nyékpuszta HC field is unconventional not just from reservoir but other physical-chemical conditions point of view
- Despite development of geological and reservoir models harsh exploration environment still holds strong limitations on information gathering and quality
- Mitigation of these limitations requires a continuous ,out of the box" thinking to maximize information volume and value

It's believed that further drilling and development campaigns could be more smooth, valuable and cost effective with presented / forecasted solutions

Thank you for your kind attention!

