

Understanding the Challenge – Design for Effective Stimulation

Visegrád, 20 November 2014 Jonathan Abbott, Schlumberger

Society of Petroleum Engineers

Agenda

- Stimulation Challenges
- Completion Selection for the Reservoir
- Introduction to Matrix Stimulation
- Overview of Matrix Design Process
- Case Study 1: Damage Identification/Acid Design
- Case Study 2: Stimulation Placement
- Introduction to Fracturing (Focus on Acid Frac)
- Case Study 3: Acid Fracturing

Stimulation challenges ...

- Maximize the NPV on well drilling and completion investment
 - Increase hydrocarbon production rate
 - Increase the reservoir economical life and reserves
- Stimulation for reservoir management
 - Efficient drainage of laminated formations
 - Delaying the onset of water production
 - Sand control
- Provide highly conductive flowpath
 - Bypass near wellbore "damage"
 - Ease in hydrocarbon drainage

 Modify flow regime deep within the formation (tens to hundreds of feet)

The Resource Shift

Reservoir Impact on Completion Selection

Reference. Schlumberger Oilfield Review 2002

Reservoir Impact on Completion Selection

Reference. Schlumberger Oilfield Review 2002

Reservoir Impact on Completion Selection

Reference. Schlumberger Oilfield Review 2002

Matrix Stimulation

Injection of a Treatment Fluid (Acid or Chemical) to Dissolve,
Disperse or Bypass Near Wellbore Damage

Carbonate Treatments Create New Flow Paths Sandstone Treatments Remove Damaging Agent

Overview of Matrix Acidizing Design Process

- Determine if candidate is appropriate for Matrix Acidizing
- Determine the damage mechanism: Drilling/Scale Organic/Inorganic
- Select the appropriate acid type: HCI/Emulsified/Organic/Mud Acid/Clay Acid
- Design Appropriate acid Coverage: gal/ft of formation/fluid penetration
- Ensure effective fluid placement: mechanical+chemical
- Consider pre/post treatment flushes to enhance main acid treatment and improve cleanup
- Compare designed treatment with actual results and use lessons learned for subsequent treatment.

Case Study 1: Damage Identification and Acid Design

- Well-1 and Well-2 are offset wells 150m apart
- BHST~80degC
- Lithology: Laminated Clean/Dirty Carbonate
- Low permeability, low porosity
- Low API oil gravity
- Iron species evident from core/cuttings analysis

d	depth (m)		carbo	other minerals	7		
		calcite	dolomite	ankerite	total carbonates	pyrite	2
30	060.00	47.9	0.2	6.0	54.1	4.8	100.0
30	070.00	81.1	0.0	0.3	81.4	2.0	100.0
30	00.080	77.3	0.0	3.4	80.7	2.0	100.0
30	00.00	45.7	0.0	1.4	47.1	5.2	100.0
31	100.00	94.8	0.5	1.1	96.4	1.1	100.0
31	110.00	94.7	0.2	0.8	95.7	1.2	100.0
31	120.00	77.0	0.0	0.9	77.9	2.5	100.0
31	130.00	80.1	0.0	0.9	81.0	2.2	100.0
31	140.00	97.6	0.6	1.0	99.2	0.4	100.0
31	150.00	97.0	0.5	1.4	98.9	0.6	100.0
31	160.00	97.2	0.1	1.9	99.2	0.4	100.0

Case Study 1: Design Comparison

Well-1

- Aggressive Acid formulation NOT designed to mitigate clay and Iron content.
- Pre-flush, Acid formulation and Post-flush NOT designed for low API oil gravity
- Potentially damaging polymer-based diverter acid applied
- Excessive fluid volumes applied for pre-job injection diagnostics

Well-2

- Comprehensive analysis of formation lithology and fluids w. lab testing
- Acid formulation optimized with chelants and organic acids to prevent and suspend degradation products
- Pre-flush, Acid formulation and Post-flush designed with mutual solvent to maximize stimulation efficacy
- Polymer-based acid removed.
- Fluid volumes optimized

Case Study 1: Stimulation Results

Well-1

- Interval Y
- No Effect of Acid
- No improvement of injection

Well-2

- Interval Y
- New Acid Design results in significant pressure reduction
- Production from stage results in cancellation of additional stimulation

Case Study 2: Offshore Gulf

- Highly fractured, tight carbonate
- Φ<0.05, k<0.01mD</p>
- BHST = 290degF
- Formation Depth ~4000m
- Formation thickness ~250m
- Lateral Length ~350m
- Historical Stimulation Approach
 - CT conveyed stimulation
 - Low pump rates, low acid volumes
- New Stimulation Approach
 - Multi-Stage Completion System
 - High rate Matrix, high acid volumes
 - Fiber-laden Diverter

Case Study 2: Stimulation Placement

Case Study 2: Understanding Formation Complexity

- A total of 6 fracture intervals are identified from micro formation image
- Sonic identifies as OPEN Fractures at

 Sonic borehole acoustic reflection used to identify fractures extending into the formation

Case Study 2: Completion Design

Case Study 2: Simulated Fracture

Case Study 2: Fluid Selection

- Combination of chemical and mechanical diversion
- Promotes uniform stimulation of fractured carbonate formations

Case Study 2: Project Impact

- Well Results
 - "We are of course very pleased with these results..." Executive Chairman
- Significant change in Field development plans
 - Restimulation of existing wells
- Production facility at max. capacity

Hydraulic Fracturing

A Reservoir Treatment Performed to Create a High
Conductivity Path from the Reservoir to the Wellbore

Acid Fracturing

General Requirements for Acid Fracturing

Carbonate formations

- Not applicable in sandstone formations
- HCI, even HF, will not adequately etch sandstone fracture face
- Materials (fines) released through dissolution Can plug the fracture

Cleaner Limestone and Dolomite formations

- Dirty carbonate rocks (< 70% solubility in HCI) are poor candidates</p>
 - Acid etched channels may be impaired
 - Release of insoluble material may plug the channel

Competent rock

- Conductivity can deteriorate over time
- Soft formations unable to retain conductivity after closure
- Chalk formations are generally not suitable:
- Connectivity vertically across interval
 - Reservoirs with horizontal sterilities (e.g., anhydrite) can compromise vertical connectivity of conductivity

Limits of Acid Fracturing

- Kinetic limit:
 - Upper limit for depth of acid penetration
 - Dependent on reaction kinetics
- Fluid loss limit:
 - Lower limit on depth of acid penetration
 - Negatively affected by wormhole formation

- Conditions for differential etching
 - Rock heterogeneity can create differential etching
 - Can be enhanced by viscous fingering
 - Dominated by reactivity ! (generally overlooked)

Acid Fracturing Challenges

BHP control using conventional diverter

Fiber and VES – Self Diverting Acid

Dual leakoff control with MaxCO3 Acid:

- 1. Fibers bridging in natural fracture/wormhole
- High viscosity VDA provides :

• Larger fracture width to reduce Area/Volume and increase spending time.

• VDA viscosity upon spending behind the fiber cake, thus decreasing spurt loss

Case Study 3: Acid Fracturing with Fiber Laden Acid

Well X

- Open hole horizontal
- Multi-stage completion (3 stages)
- Stage 1: 379ft open-hole length

Full story in: J.L. Jauregui (Saudi Aramco) et al., SPE 142512 – Successful Application of Novel Fiber Laden Self-Diverting Acid System during Fracturing Operations of Naturally Fractured Carbonates in Saudi Arabia

Case Study 3: Treatment Schedule

	Treatment Schedule								
	Stage Name	Pump Rate (bbl/min)	Fluid Name	Stage Fluid Volume (gal)	Acid Conc. (%)				
	Pad	25.0	CROSSLINKED 35 LB GEL	5,000	0				
	Acid	25.0	EMULSIFIED ACID	6,000	28				
F	Pad	30.0	CROSSLINKED 35 LB GEL	2,500	0				
	Diverter 1	30.0	Diverting System (75#)	2,000	15				
	Pad	30.0	CROSSLINKED 35 LB GEL	5,000	0				
	Acid	30.0	EMULSIFIED ACID	6,000	28				
	Pad	30.0	CROSSLINKED 35 LB GEL	2,500	0				
	Diverter 2	30.0	Diverting System (75#)	2,000	15				
	Pad	35.0	CROSSLINKED 35 LB GEL	5,500	0				
	Acid	35.0	EMULSIFIED ACID	7,000	28				
	Pad	40.0	CROSSLINKED 35 LB GEL	2,500	0				
	Diverter 3	40.0	Diverting System (100#)	2,500	15				
	Pad	40.0	CROSSLINKED 35 LB GEL	6,000	0				
	Acid	40.0	EMULSIFIED ACID	9,000	28				
	Overflush1	40.0	Overflush	10,000	0				
	CFA Diverter	10.0	Diverting System (100#)	2,500	15				
	CFA	10.0	HC1-28_CFA	9,000	28				
	Overflush2	10.0	Overflush	10,000	0				
	Flush	10.0	Water	10,612	0				

Case Study 3: Pressure plot

- Fiber Laden Acid leads to pressure increase of ~3100psi at constant injection rate
- The entire treatment remains above fracturing pressure, propagating the fracture

Case Study 3: Fiber Laden Acid vs Conventional Diverters

Fig. 5 — Direct offset wells mineralogy, stress gradient porosity permeability profile and perforated intervals position.

Full story in:

T. Bukovac (Schlumberger) et al., SPE 160887 – Stimulation Strategies to Guard against Uncertainties of Carbonate Reservoirs

Case Study 3: Treatment Outcome: Comparison

- Normalized post-frac gas production has increased of 40%
- Diverter volume is now 20% of total acid volume (compared to 45% in conventional treatments)
- 445gal/ft of acid, vs 720 gal/ft in conventional treatments

Case Study 3: Reducing Job Size, Increasing Efficiency

On ~50 wells in Saudi Arabia,

- Fiber Laden Acid enables reducing significantly the fluid volumes
- Clean-up period dropped on average from 4.7 days to 2 days

Conclusions

- Stimulation Challenges
- Completion Selection for the Reservoir
- Requirements of Effective Matrix & Acid Frac Stimulation
- Stimulation Efficacy Dependent* on:
 - Damage Identification/Acid Design
 - Stimulation Placement
 - Fluid Loss Control (Acid Fracturing)

Questions?

permeability, mD

References:

- SPE 160887 Stimulation Strategies to Guard against Uncertainties of Carbonate Reservoirs
- SPE 144183 Innovative Method to Control Acid Placement During the Stimulation of Wells with High Water Cut
- SPE 142512 Successful application of novel fiber laden self-diverting acid system during fracturing operations of naturally fractured carbonates in Saudi Arabia
- SPE 138910 Fiber-Assisted Self-Diverting Acid Brings a New Perspective to hot, deep Carbonate Reservoir Stimulation in Mexico
- SPE 134495 Understanding Diversion with a Novel Fiber-Laden Acid System for Matrix Acidizing of Carbonate Formations
- SPE 132003 Field Trials of a Novel Fiber-Laden Self-Diverting Acid System for Carbonates in Saudi Arabia
- IPTC 13097 Changing the game in the stimulation of thick carbonate gas reservoirs
- SPE 123827 Combination of chemical diverters and degradable fibers enhances the success of stimulation in complex carbonate environments
- SPE 112419 Successful Stimulation of Thick, Naturally Fractured Carbonate Pay Zones in Kazakhstan