

USE OF SIGMA METHOD IN THE EVALUATION AND CHARACTERIZATION OF SANDSTONE UNIT A IN ŽUTICA OIL AND GAS FIELD

Workshop 15-16 November 2018, Visegrád

Society of Petroleum Engineers

Ph.D. Zoran Čogelja, Ph.D. Željka Marić Đureković, Hrvoje Pavičić & Zdravko Kosovec

AGENDA

- FIELD & GEOLOGICAL DATA
- DEPOSITIONAL MODEL
- SIGMA METHOD BASICS
- WATER SATURATION CALCULATION BY SIGMA METHOD
- > SIGMA OF MINERALS, ROCKS & FLUIDS
- > USE OF SIGMA METHOD IN UNIT A OF ŽUTICA FIELD
- SIGMA INTERPRETATION VS. TEST RESULTS
- CONSLUSIONS AND RECOMMENDATIONS

FIELD & GEOLOGICAL DATA

FIELD DATA

- placed in central part of Croatia, in Sava Basin
- mature field, in production since 1966
- chosen for EOR project: CO₂

GEOLOGICAL DATA

- Upper Pannonian deepwater sediments
- composed of sandstones, siltstones and marls
- Sandstone Unit A (Poljana sandstones Member), subdivided into A₃, A₂, A₁, A and A'

Sediments were deposited in deepwater environment by turbiditic mechanism (Šimon, 1980; Vrbanac, 1996)

Coarse-grained sand detritus was deposited within channels and finegrained along levees. Occasinally, due to a more intense influx of the clastic material, sandstones were deposited in the form of turbiditic splays/lobes

1) Channel, 2) Lobe, 3) Levee, 4) Distal lobe and 5) Basin marls

DEPOSITIONAL MODEL

- Shape of SP/GR curves indicates depositional facies shape of well log is related to the grain size of rock successions (Rider, 1986)
- > Cylindrical, bell, funnel and irregular SP/GR log shape have been identified
- According to SP/GR log shapes the following depositional elements have been recognized: CHANNELS, LEVEE, SPLAYS/LOBES AND BASIN MARLS

SP/GR LOG SHAPE	LITHOFACIES ASSOCIATION	DEPOSITIONAL ELEMENT	SP/GR LOG SHAPE AND DEPOSITIONAL ELEMENT
CYLINDRICAL	thick beded masive sandstones; sharp top and base with consistent trend; thickness up to 20 m	CHANNEL AXIS	a SP (1P)
BELL	masive and layered sandstone and siltstone; abrupt base with fining upward trend – SP/GR values increase upward indicate increasing in the shale content upward	CHANNEL MARGIN, LEVEE	20 20<
FUNNEL	thick and thin layered sandstones and siltstones; SP and GR values decrease upward indicating decrease of shale content, forming coarsening upward trend with abrupt top	SPLAY/LOBE	sp (sp) sp (sp) <t< td=""></t<>
IRREGUALAR	marls with rare layers of siltstones	BASIN DEPOSIT	

DEPOSITIONAL MODEL

> Each depositional element is characterized by a unique set of attributes:

- 1. CHANNEL FILLS cylindrical/bell SP/GR shape; erosional bases, thick bedded massive sands
- 2. LEVEE DEPOSITS bell SP/GR shape; thin-bedded turbidites deposited outside channels; increased content of clay and silt
- 3. SPLAYS/LOBES funnel/symmetrical SP/GR shape; bedded turbidites, sheet geometry
- 4. BASIN MARLS irregular SP/GR shape; marls with rare layers of silts

SIGMA METHOD BASICS

- > a pulsed neutron logging method
- high energy neutron source (minitron) emits fast neutrons
- interactions with the atomic nuclei within reservoir rocks and fluids in the pore space
- Ioss of energy, partial capture of neutrons by atomic nuclei of the surrounding media (reservoir rocks and fluids)
- thermal neutrons registered by the detectors
- SIGMA (neutron capture cross section) the capacity of the minerals and fluids to capture the neutrons

SIGMA OF MINERALS, ROCKS & FLUIDS

Material			SIGMA @ 20°C			
quartz			4.26			
calcite			7.07			
dolomite				4.7		
anhydrite				12.5		
gypsum				18.4		
magnesite				1.44		
muscovite				16.9		
biotite				30.0		
chlorite				25.3		
glauconite				23.4		
kaolinite				12.8		
montmorill	onite			14.5		
illite				15.5		
iron				193		
tourmaline			4,310	- 7,450		
rock salt				753		
sandstone				7 - 16		
limestone				7 - 11		
dolomite		6 - 10				
shale				25 - 45		
fresh wate	r \			22		
salt water			2	5 - 138		
oil				17 - 22		
gas				5 - 17		

WATER SATURATION CALCULATION BY SIGMA METHOD

- Continuous oil production from the oil ring and periodic gas production/injection from/into the gas cap of Unit A reservoirs in the past five decades
- > Changes of the original positions of oil/water and gas/oil contacts
- Main objectives of SIGMA logging/interpretation campaign:
 - identification and quantification of residual hydrocarbons
 - defining current oil/water and gas/oil contacts

Extent of the capaign:

- 34 wells loggged
- 20 Unit A reservoir intervals/groups of intervals in 14 wells tested
- in other 20 wells testing/production targets in deeper reservoir units (B & gama)

- Challenges & limitations:
 - low SIGMA contrast between oil and water zones due to:
 - a) low salinity of reservoir water (14-18 g/l NaCl equivalent)
 - b) contribution of unrecoverable oil in the depleted oil zones to the measured SIGMA
 - mineralogical/sedimentological heterogeneity of reservoir rocks
 - limited mineralogical data needed for reliable selection of rock matrix SIGMA available
 - inconsistent log data quality due to increasing working hours of neutron generator (minitron)

Key solutions:

- selection of matrix SIGMA characteristic of depositional elements, based on SP/GR/SIGMA log shapes/values
- detailed local knowledge and experience gradually developed during the execution of the project

> Well-11:

- channel fills in the botom/middle parts of the reservoirs (clean quartz/mica sandstones) – relatively low matrix SIGMA values (11-12 c.u.) used in the interpretation
- transition to levee deposits in the top parts (silty/clayey sandstones) – slightly higher matrix SIGMA values (13-14 c.u.) used
- based on SIGMA interpretation A₃ and A₂ (bottom part) reservoirs selected for testing
- 8 m³/day of oil produced
- log shape and fluid distribution suggest that the sandstone considered the bottom layer of A₁ is actually the top layer of A₂

> Well-5:

- levee deposits (silty/clayey sandstones)
- medium matrix SIGMA values (13-14 c.u.) used in cleaner parts
- higher matrix SIGMA values (15-20 c.u.) used in more silty/clyey zones
- based on SIGMA interpretation
 A₃ reservoir selected for testing
- 3000 m³/day of gas produced!!?
- possible causes of log analysis vs. well test result mismatch:
 - 1. mineralogical heterogeneity influencing the interpretation
 - 2. low relative permeability for liquid phase
 - 3. behind casing communication

> Well-12:

- splay/lobe deposits (layered clean quartz/mica sandstones, silty/clayey sandstones and siltstones)
- zonation and variation of matrix SIGMA values used in the interpratation based on SP/GR/SIGMA log shape and values
- based on SIGMA interpretation A₁ reservoir selected for testing
- 3.5 m³/day of oil produced

SIGMA INTERPRETATION VS. TEST RESULTS

Well	Analysis results	Tested reservoirs	Test results	
1	A3 & A2 water, A1 oil with some water in the bottom part		10 m3/day of oil, without water	
2	2 A3 & A2 water, A1 bottom part oil, top part gas, A water (depleted)		the last (2nd) day of testing approx. 0.6 m3 of oil & 0.4 m3 of water (increased water percentage compared to the 1st day, reservoir water salinity - conclusion: water in the reservoir	
			approx. 1 m3/day of oil & 1 m3/day of water, without gas	
3	A3 & A1 oil+water		0.5 m3/day of liquid, 80% oil, 20% water	
4 A3, A2 & A1 water, A	A2 A2 8 A1 water A cas	A3	approx. 10 m3/day of water	
	AS, AZ & AI water, A yas	A1	approx. 4 m3/day of oil, without water	
5	A3 oil, A2 oil+gas, A1 gas	A3	approx. 3000 m3/day of gas through 3.5 mm choke	
		A3	0.9 m3/day of oil with traces of water and gas	
0	AS OII, AZ & AI Yas	A2	approx. 20000 m3/day of gas & 2.4 m3/day of condensate	
		A3	approx. 6.0 m3/day of liquid, 5.0 m3/day of water & 1.0 m3/day of oil	
7 A3 & A2 oil+w	A2 % A2 ail water A1 and paceibly come ail in the better part	A2		
	As a Az on+water, AI gas, possibly some on in the bottom part	A2	approx. 2.0 m3/day of liquid, 1.5 m3/day of water & 0.5 m3/day of oil	
		A1	approx. 0.9 m3/day of oil, without gas	
0			13.2 m3/day of water & 0.2 m3/day of oil	
0	AS, AZ & AT water with some on, A gas with some on	A2	5.9 m3/day of water	
9	A3 & A2 water, A1 gas+water, A & A' water+gas	A1	approx. 4.5 m3/day of water	
10	A3 & A1 water with traces of HC	A3 & A1	3 m3/day of water	
11	A3 & bottom part of A2 oil, top A2 & A1 gas, A some gas (partially depleted?)		approx. 8 m3/day of oil, without water	
12	A2 water, A1 oil with some gas, A & i A' gas		approx. 3.5 m3/day of oil	
13	A3 oil+some gas in the top part, A1 & A gas		16.6 m3/day of oil & 1050 m3/day of gas	
14	A3, A2, A1 & A gas, possibly some liquid phase in the bottom part of A3	A3	gas with some liquid	

Given the unfavourable conditions (mineralogical/sedimentological heterogeneity, low water salinity) a reasonably high interpretation success rate achieved

mismatch

CONCLUSIONS AND RECOMMENDATIONS

- Sandstone Unit A was deposited in deepwater environment by turbiditic mechanism
- According to SP/GR log shape, channels, levees, splays/lobes and basin marls have been recognized
- Each of these depositional elements is characterized by a unique set of reservoir attributes:
 - CHANNEL FILLS cylindrical/bell SP/GR shape; erosional bases, thick-bedded massive sands
 - LEVEE DEPOSITS bell SP/GR shape; thin-bedded turbidites deposited outside channels; increased content of clay and silt
 - SPLAYS/LOBES funnel/symmetrical SP/GR shape; bedded turbidites, sheet geometry
 - BASIN MARLS irregular SP/GR shape; marls with rare layers of silts

CONCLUSIONS AND RECOMMENDATIONS

- By carefully planned and executed SIGMA logging and interpratation campaign the following has been achieved:
 - current fluid saturation in the reservoirs determined
 - residual oil saturation identified and quantified
 - gas/oil and oil/water contacts redifined
 - oil production increased
 - better understanding of reservoir compartments, communication and flow barriers obtained
 - indications of changes in reservoir zonation
- Key factors in overcoming interpretational chalenges and limitations:
 - good understanding of depositional elements based on SP/GR/SIGMA log shapes/values
 - selection of adequate matrix SIGMA values
 - detailed local knowledge and experience developed during the execution of the project

Recommended further application of the acquired information:

 new geological model of Unit A, by integration with seismic and production data

LITERATURE

- 1. ČOGELJA, Z.: Identifikacija preostalih ugljikovodika u ležištu karotažom pobuđene radioaktivnosti, –Unpub. PhD Thesis, Faculty of Mining, Geology and Petroleum Engineering, University of Zagreb, Zagreb, 2011, 159 p.
- ČOGELJA, Z. & KOSOVEC, Z.: Procjena zasićenja ugljikovodicima u ležištu uporabom puls-neutron metoda [*Hydrocarbon formation evaluation in reservoir using puls-neutron methods*], 5. međunarodni znanstven-stručni skup o naftnom gospodarstvu, Šibenik, Hrvatska, rujan-listopad 2009.
- 3. HOTWELL Ges.m.b.H: Pulse Neutron Neutron System, Klingenbach, Austria, 2006.
- 4. READING, H. G. & RICHARDS, M.: Turbidite systems in deep-water basin margins classified by grain size and feeder system. American Association of Petroleum Geologists Bulletin, 1994, 78, 702-822.
- 5. RIDER, M. H.:Geological interpretation of well logs:-John Wiley and sons, New York NY, 1986, 175 p.
- 6. SMOLEN, J. J.: Cased Hole and Production Log Evaluation, PennWell, Tulsa, USA, 1995.
- ŠIMON, J.: Prilog stratigrafiji u taložnom sustavu pješčanih rezervoara Sava-grupe naslaga mlađeg tercijara u Panonskom bazenu sjeverne Hrvatske [Contribution to stratigraphy of sandstone reservoirs depositional system in the Sava Group sediments in Late Tertiary of Pannonian basin in the Northern Croatia – in Croatian]. –Unpub. PhD Thesis, Faculty of Mining, Geology and Petroleum Engineering, University of Zagreb, Zagreb, 1980, 66 p.
- 8. VRBANAC, B.: Palaeostructural and sedimentological analyses of Late Pannonian sediments of Ivanić Grad formation in the Sava depression. -Unpubl. PhD Thesis, Faculty of Natural Sciences, Geol. Dep. Univ. Zagreb, Zagreb, 1996, 303 p.