

Chemical Sand Consolidation Experiences in Austrian Gas Fields

Workshop

16-17 November 2023, Visegrád

Society of Petroleum Engineers

Goal: highlight brown-field operation opportunities

Published October 6, 2022

Akos Kiss

Senior Expert Production Technology OMV Expl.&Production GmbH

INTERNAL BLOG

//V Explor

Exploration & Production

Value Center Operations

Sustainability

MV Head Offic

Austri

Gänserndo

How to produce 6.5 million Nm3 natural gas in six months from a plug and abandon candidate well?

The Subsurface Engineering Team in OMV Austria and the Well Optimization & Integrity Team continuously work together to optimize and improve the national oil and gas production in Austria. This was also the case with the Rabensburg West 4 gas well, a plug and abandon candidate due to sand production and shut-in for years waiting for a workover rig to arrive to execute the abandonment. The vertical well has 2 meter perforations at a depth of 1061,5-1063,5 mMD (16. Sarmat reservoir). But because of friable sand influx with the production the tubing was filled up to 880 m depth with sand.

Eliminating sand production at the sand face was the only valuable option to continue hydrocarbon production. The target of the project was to research and apply a solution, which is technically sound, readily available in Europe, with reduced HSSE risks and little economic impact. To control intervention costs, it was decided to favor sand control solutions for rig less interventions. Collaboratively, the teams evaluated formation rock consolidation with the help of an internally catalyzed aqueous-based emulsion of curable epoxy resin (ICABECER). Laboratory testing proved the system's suitability for the target well and confirmed the viability of the planned operations schedule to deploy the treatment via coiled tubing. In addition, the testing also eliminated concerns about permeability reduction because of the coating of sand grains with the consolidating resin.

The consolidation work started with the removal of the sand from the tubing and the casing. Foam was used to lift the significant amount of sand from the wellbore.

Agenda

- Introduction
- Intervention Selection
- Candidate Selection
- Treatment Design
- Treatment Placement
- Results
- Conclusions
- Potential Future Use of Technology

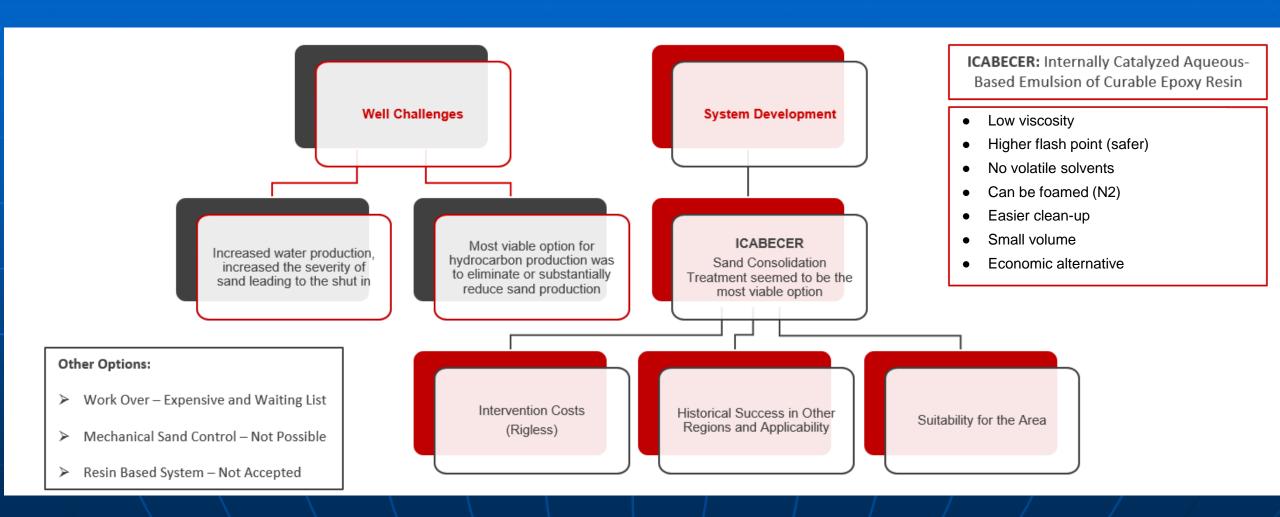
Introduction

Sand Production

- One of the major challenges due to unconsolidated formation or mechanical failure
- Several consequences (erosion, affecting productivity, increase production cost...)

Mature Field

- Water Production
- Remaining hydrocarbons
- Budgetary constraints


Traditional Methods

- Passive sand control (selective perforation, drawdown management...)
- Active sand control (stand alone screens, gravel packs…)

Formation Sand Consolidation

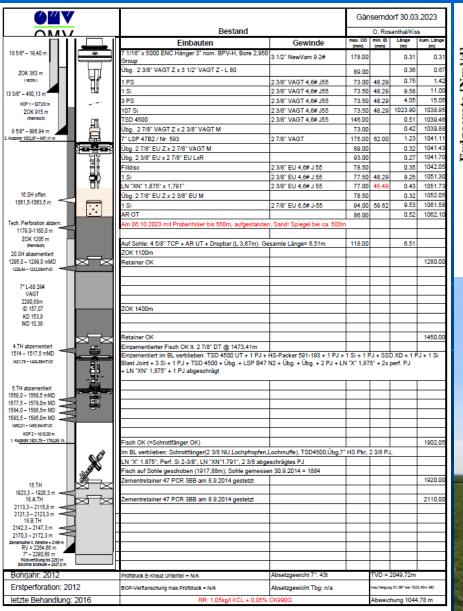
- Resin consolidation since 1940's
- Develop strength with minimal permeability loss

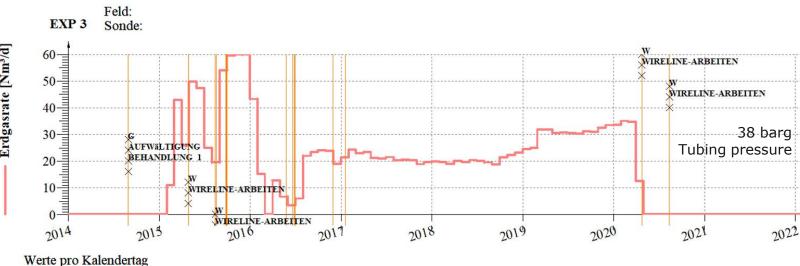
Intervention Selection

Candidate Selection

ICABECER* Design

- Up to 105 °C
- 3 m for conventional resins 30 m for ICABECER
- Recommended >500 mD, tested down to 100 mD
- Works in non-well-sorted sand and heterogeneous sand but easier to place in homogeneous
- Economical compared to other sand control techniques (through tubing)
- Liquid or gas producer

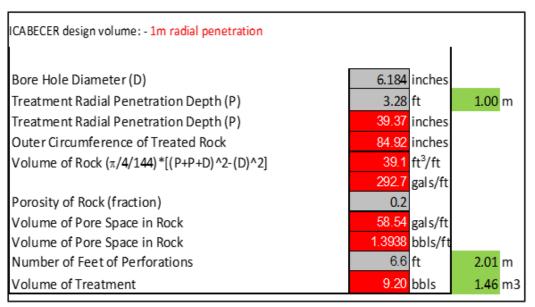

Well / Field Information


- 32 °C
- 2m interval (usually <5 m on this field)
- 150 mD
- Homogeneity but poorly sorted sand with 3-21% fines
- Important focus on economics even though main target was ICABECER validation
- Gas producer

A well affected by water and solids production, planned for P&A was selected

^{*}Internally Catalyzed Aqueous-Based Emulsion of Curable Epoxy Resin

Candidate Selection



Treatment Design

Lab tests to evaluate permeability reduction

Volumes Design

CT for more precise placement

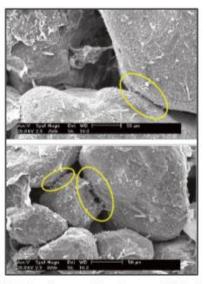
Fluid Schedule	Fluid Pumped	CT Rate		
		Bbl/min	Lt/min	CT Position
Pre-flush 1	Brine + Surfactant	0.5 – 1	79 - 159	Circulating & Squeeze & Reciprocate
Pre-flush 2	Brine	0.5 – 1	79 - 159	Squeeze & Reciprocate
Main Treatment	ICABECER	0.5 – 1	79 - 159	Squeeze & Reciprocate
Post flush	Brine	0.5 – 1	79 - 159	Squeeze & Reciprocate
Displacement	Nitrogen - To a stabilized injection pressure for 10 mins or max 30,000scf	500 Scf/min		Squeeze & Reciprocate
РООН СТ	Nitrogen - If required	Minimum rate		Squeeze & Reciprocate

Placement Methodology

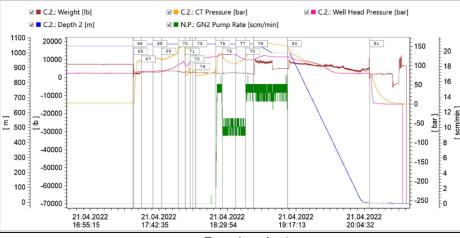
Treatment Placement

Sand Cleanout

- Coiled Tubing
- Foam

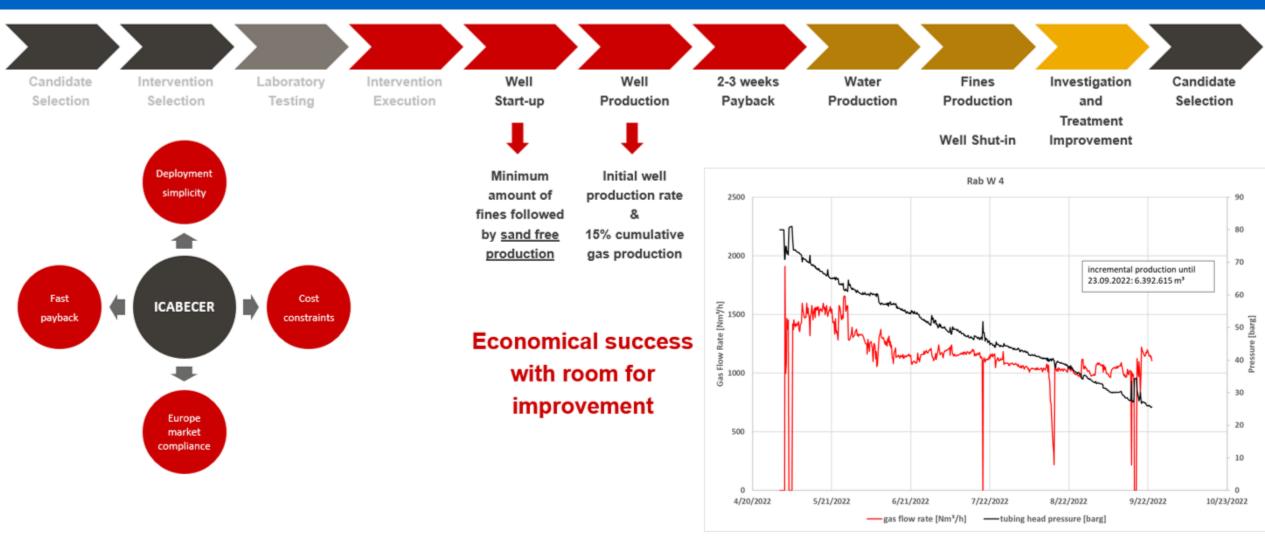

Sand circulated/lifted out of the well

Sand Consolidation


- Coiled Tubing reciprocating
- Pre-flush + ICABECER + Post-flush

Displacement

- Coiled Tubing reciprocating
- N2 (stable injection pressure)



Photomicrographs of consolidated samples of core material

Pumping chart

Results

Gas flow rate and tubing head pressure since the sand consolidation job

Conclusion

Technical

- Reliable? remedial sand control with significant potential for near future field development in Austria
 - Gas lifted oil well cases: 1 successful, 1 failed
 - Gas well cases: 2 successful (same well), 1 failed
 - Oil well with sucker rod pump case: 1 not conclusive job
- Keys for success: Candidate selection & Treatment placement
- One-component system: Simplified treatment placement & Increased chances of success

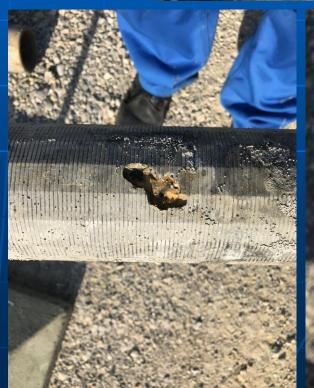
Economical

- Very short payback of intervention cost (2-3 weeks)
- Incremental revenue

Improvement

 Water production caused recurring fines production after around six months, causing the treated well to be shut in again

Potential Future Use of Technology


- Gas storage wells with failed screens
 - Temporary solution until completion change

Internal