

## Mature Based for New Solutions Conference

Visegrád, 21 November 2013

# Joint Stimulation-Water Shut-off Technologies Lead to Extra Oil from Mature Fields

Dr. Bela Kosztin SPE, MOL US E&P

**Society of Petroleum Engineers** 

### Background

2012: World Yearly Oil Production ≈ 74.65 MMbbl/d, 75 % Water cut, 60 % production from brown field w ≥ 80 % Water cut (non-OPEC)



What is the present global problem? There is a wide gap between forecasted production & demand Global demand will average 92 Million bbl/d in 2014 @115 \$/bbl In the past decades the incremental contribution of exploration to reserves is less than the annual production.

| Historical Crude Oil Prices |           |             |                |             |               |             |                |
|-----------------------------|-----------|-------------|----------------|-------------|---------------|-------------|----------------|
| Year                        | Dollars   | <u>Year</u> | <u>Dollars</u> | <u>Year</u> | Dollars       | <u>Year</u> | <b>Dollars</b> |
| 1946                        | 1.4       | 1966        | 2.9            | 1986        | 15            | 2006        | 66             |
| 1947                        | 1.8       | 1967        | 3.0            | 1987        | 19            | 2007        | 72             |
| 1948                        | 2.6       | 1968        | 3.1            | 1988        | 16            | 2008        | 100            |
| 1949                        | 2.6       | 1969        | 3.3            | 1989        | 20            | 2009        | 62             |
| 1950                        | 2.6       | 1970        | 3.4            | 1990        | 24            | 2010        | 79             |
| 1951                        | 2.6       | 1971        | 3.6            | 1991        | 21            | 2011        | 95             |
| 1952                        | 2.6       | 1972        | 3.6            | 1992        | 21            | 2012        | 94             |
| 1953                        | 2.7       | 1973        | 3.9            | 1993        | 18            |             |                |
| 1954                        | 2.8       | 1974        | 10             | 1994        | 17            |             |                |
| 1955                        | 2.8       | 1975        | 11             | 1995        | 18            |             |                |
| 1956                        | 2.8       | 1976        | 13             | 1996        | 22            |             |                |
| 1957                        | 3.0       | 1977        | 14             | 1997        | 21            |             |                |
| 1958                        | 3.1       | 1978        | 15             | 1998        | 14            |             |                |
| 1959                        | 3.0       | 1979        | 22             | 1999        | 19            |             |                |
| 1960                        | 3.0       | 1980        | 37             | 2000        | 30            |             |                |
| 1961                        | 3.0       | 1981        | 37             | 2001        | 26            |             |                |
| 1962                        | 3.0       | 1982        | 34             | 2002        | 26            |             |                |
| 1963                        | 3.0       | 1983        | 30             | 2003        | 31            |             |                |
| 1964                        | 2.9       | 1984        | 29             | 2004        | 41            |             |                |
| 1965                        | 2.9       | 1985        | 28             | 2005        | 56            |             |                |
|                             | Average C | Crude Oil P | rices are sho  | own in this | table: 1946 t | o present   |                |
|                             |           |             |                |             |               | /           | / /            |

### What our answer can be ?

### **Oilfield Chemistry**

(Multidisciplinary branch of sciences integrating the knowledge of reservoir engineering, production engineering, chemical engineering, chemistry & many more...)

## **Mission of Oilfield Chemistry**:

□*To increase the recovery efficiency up to a possible ultimate limit* 

□To maintain the production at matured, depleted oil fields.

## **Declarations - Definitions**

#### 1st

□Water is an unwanted by-product of petroleum production and as such should be immobilized in situ. (Is water always detrimental to petroleum production ?)

#### 2nd

Water Shut-off:

**Stopping water flow in the reservoir (chemical shut-off)** 

**Arresting inflow of water to the well (mechanical shut-off)** 

## **Bad or Good Water?**



In oil reservoirs, natural water drive gives the highest recovery

## **Bad or Good Water?**

#### In the Reservoirs:

Water invasion to oil reservoirs is *useful* as it provides drive, recovery, and pressure maintenance
Water flow in oil reservoir could be also *detrimental* (oil by-passing, low ultimate recovery)
Water invasion to gas reservoirs is *detrimental* (low recovery)

#### In the Wells:

**Water inflow to petroleum wells is always harmful:** 

- reduces production rate of oil or gas
- causes early shut downs
- leaves un-recovered oil outside the wells

### WHY DO WE WANT TO REDUCE WATER PRODUCTION?

#### **REDUCE OPERATING EXPENSES**

Reduce pumping costs (lifting and re-injection): ~\$0.25/bbl (\$0.01 to \$8/bbl range)
Reduce oil/water separation costs
Reduce platform size/equipment costs
Reduce corrosion, scale, and sand-production treatment costs
Reduce environmental damage/liability

#### **INCREASE HYDROCARBON PRODUCTION**

- Increase oil production rate by reducing fluid levels and downhole pressures.
- Improve reservoir sweep efficiency.
- Increase economic life of the reservoir and ultimate recovery.
- Reduce formation damage.

#### **Definition of Success in Matrix Stimulation**

"We define a matrix stimulation job as success when the technical and economic objectives are reached. It is a failure if those goals are not reached." (Paccaloni 1993)

"Acidizing is successful only if two conditions are met : the skin damage in the well is reduced or removed, enabling the well to flow at higher rates at the same or lower drawdown, and the actual rate produced by the well increased sufficiently to pay out the job in a reasonable period of time ." (SPE 14827 1987)

#### **2 Reasons Why Acid Treatments Fail:**

□Acid-removable damage is not present

□If it is present it is not fully contacted (Acid does not go where it needs to go)

### **Relative Permeability Modification**

Certain water-soluble polymers, inorganic gels show different behaviour (resistance) against the oil and water flow  $(k_{r,o} = k_o/k \quad 0 < k_{r,o} < 1)$ 



### **Relative Permeability Modification**

Certain water-soluble polymers, inorganic gels show different behaviour (resistance) against the oil and water flow  $(k_{r,o} = k_o/k \quad 0 < k_{r,o} < 1)$ 

RRF to oil can be expressed as:  $RRF_{o} =$ 

![](_page_10_Picture_3.jpeg)

| Year | SPE Paper<br>No. | Rock Type | Rock<br>Permeability | RRF     | RRFw            |
|------|------------------|-----------|----------------------|---------|-----------------|
| 2011 | 140845           | Sandstone | Medium               | 1.05    | 37.5            |
| 2010 | 125955           | Sandstone | Low                  | Gas     | 1.4             |
| 2009 | 123869           | Sandstone | High                 | 1.06    | 1684            |
| 2009 | 121789           | Sandstone | Medium               | 0.95    | 56.7            |
| 2009 | 119850           | Sandstone | Low                  | 1.1-1.8 | 1.1-3.6         |
| 2009 | 114557           | Sandstone | Very Low             | Gas     | 1.5             |
| 2008 |                  | Limestone | Very Low             | Gas     | 1.2             |
| 2008 | 112458           | Carbonate | Low                  | 2       | 7.8             |
| 2007 | 106951           | Carbonate | Low                  | 2       | 6.1             |
| 2005 |                  | Sandstone | Low                  | 1.5     | 20              |
|      | 89413            | Sandstone | High                 | -       | 102-108-<br>227 |

### **Relative Permeability Modification**

□ RPM systems have their greatest potential in treating fractures (R.S. Seright: SPE 99443)

![](_page_11_Figure_2.jpeg)

Equivalent resistance to flow added by the AP polymer (expressed as distance through untreated rock):

In oil zone:  $0.1 \text{ ft } x \ 2.0 = 0.2 \text{ ft.}$ In water zone:  $0.1 \text{ ft } x \ 7.8 = 0.78 \text{ ft.}$ In water zone:  $0.1 \text{ ft } x \ 6.1 = 0.61 \text{ ft.}$ 

## Hydrophobically Modified Associative Polymer

Acrilamyde type polymer (water soluble, hydrophilic), modified with linear (hydrophobic) acrylate chain (C-18)>

□ Primarily cationic at pH below 7, and anionic at pH above 7.

Hydrophobic chains show associative tendency, polymer network (micellar gel) consist of intra- & inter-molecular hydrophobic junctions (depicted as transient X-link).

Rheology of polymer solutions: Newtonian behavior at low shear rates; shear thickening followed by shear thinning behavior at high deformation rate.

□ As the shear force increases the content of loop-like chains decreases while the fraction of bridge-like chains rises.

# **Polymer Adsorption**

#### Expected polymer adsorption and association (SPE 89413)

The layer of generic water soluble polymer that builds up, polymer chains are adsorbed directly onto the surface of the rock.

Some entanglement leads to polymer chains not adsorbed directly to the surface but the thickness of the layer is limited. (left)

![](_page_13_Figure_4.jpeg)

Adsorption of the hydrophobically modified polymer (hydrophobic groups attached).

The same arrangement exists as on the previous one, but a layer of polymer chains has adsorbed onto that first layer. These are the polymers represented by the dashed lines, and they are "stuck" to the first layer by the hydrophobic associations. The red circle represents the interaction between the first layer adsorbed onto the surface and the next layer adsorbed due to the hydrophobic associations.

## **Polymer Adsorption**

- Polymer adsorption is immediate on the rock surface.
- □ Mechanism is still not clear.
- The polymer attaches to the rock surface electrostaticly, a + charged polymer attaches to the charged rock surface.
- □ Limited info about the application for carbonates.
- Depends on: <u>Chemistry</u>: polymer, surface, polymer adsorption, <u>Lithology</u>: mineralogy, heterogenity,

<u>Reservoir characteristics:</u> perm., natural fractures, pore throat radius/ fracture width or conductivity) <u>Oil saturation</u> <u>Wettability</u>

- □ Difficult to determine the required vol. for fractured systems.
- □ The supplier's calculation is valid for matrix case only.
- □ The calculation based on porosity and penetration distance only.
- The lab resistance factors sometimes are misleading, not reliable. (S<sub>w</sub> & S<sub>ro</sub>)

### WHAT DIAGNOSTIC TOOLS SHOULD BE USED?

- **1.** Production history, WOR values, GOR values
- 2. Pattern recovery factors, zonal recovery factors
- 3. Pattern throughput values (bubble maps)
- 4. Injection profiles, production profiles
- 5. Zonal saturation determinations (from logs, cores, etc.)
- 6. Injectivities, productivites (rate/pressure), step rate tests
- 7. Casing/tubing integrity tests (leak tests)
- 8. Temperature surveys, noise logs
- **9. Cement bond logs**
- **10.** Televiewers, FMI logs
- **11.** Interwell transit times, water/hydrocarbon composition
- 12. Mud losses & bit drops while drilling
- **13.** Workover & stimulation responses, previous treatments
- **14.** Pressure transient analysis, Inter-zone pressure tests
- **15.** Geological analysis, seismic methods, tilt meters
- 16. Simulation, numerical, analytical methods
- 17. Other

#### **Candidate Selection Guideline**

The following parameters should be carefully studied during candidate selection:

- Estimated remaining reserve, current water/oil saturation, available logs (RDL, FMI, CBL, RST, PLT)
- Production history, current gross production, water cut, drawdown pressure,
- Time of water breakthrough, water cut development, changes,
- Presence and intensity of natural fractures, breakouts,
- Permeability range, matrix permeability, reservoir section thickness (net/gross) in the given well.

 Radial (matrix) flow or Linear (fracture-like) flow expected: q/Δp ≤ (Σ k h)/[141.2 μ ln (r<sub>e</sub> / r<sub>w</sub>)] q/Δp >> (Σ k h)/[141.2 μ ln (r<sub>e</sub> / r<sub>w</sub>)]

All together 10 vertical and 23 horizontal wells have been selected.

### **Treatment Design**

□ Acid Type: all kind of acids or acid mixtures for deep penetration & minimized corrosion,

#### Placement techniques:

Bullhead injection Isolation with mechanical packer: RTTS and PPI Coiled Tubing application

#### □ Fluid diversion:

MAPDIR Dual injection AP polymer as chemical acid diverter Foam

#### Acid/Polymer ratio:

2:1 wells below 500 m<sup>3</sup>/d gross 1:1 if the well was not acid stimulated before &/or gross between 500-1000 m<sup>3</sup>/d 1:2+ if the water cut was near to 100% &/or 1000 m<sup>3</sup>/d gross

#### **Case History**

#### Field A & B

Discovered in 1969 (A) and 1962 Reservoir: complex carbonate reservoir porosity: 14% - 35% (A) & 27% - 35% Matrix permeability : <1 mD to >1000 mD (A) <1 mD to >200 mD  $P_i = 17,160 -> 12,500$  kPa (A) 15,600 -> 14,400 kPa  $T_r = 81$  deg C 38° API (A) and 40.3° API oil Peak net-oil rate: 1973 (A) and 1997

Water cut was developing gradually to 70%. Thereafter, the field performance started to decline with increasing water-cut and declining reservoir pressure.

# **Oil Gains and Sustainability**

| Well Name | Oil Gain after<br>activity (m³/d) | Max Oil Gain<br>(m³/d) | Oil Gain<br>(6/12/2011)<br>(m³/d) | Time to Reach Peak Oil<br>Gain (Months) | Sustainability(Months) |
|-----------|-----------------------------------|------------------------|-----------------------------------|-----------------------------------------|------------------------|
| A1        | 15                                | 44                     | 0                                 | 3.6                                     | 39.7                   |
| A2        | 10                                | 14                     | 0                                 | 2.6                                     | 34.2                   |
| A3        | 59                                | 68                     | 17                                | 12.9                                    | 30.3                   |
| A4        | 11                                | 14                     | 10                                | 4.8                                     | 8.1                    |
| A5        | -5                                | 0                      | 0                                 | 0                                       | 0                      |
| A6        | -2                                | 2                      | 0                                 | 12.4                                    | 18.0                   |
| A7        | 2                                 | 2                      | 2                                 | 1.0                                     | 1.0                    |
| <b>A8</b> | 1                                 | 1                      | 1                                 | 1.0                                     | 1.0                    |
| A9        | 0                                 | 1                      | 0                                 | 5.5                                     | 5.5                    |
| A10       | 6                                 | 6                      | 1                                 | 1.4                                     | 11.4                   |
| A11       | 20                                | 27                     | 15                                | 2.3                                     | 11.3                   |
| A12       | 18                                | 18                     | 2                                 | 0.6                                     | 13.0                   |
| A13       | -2                                | 0                      | 0                                 | 0                                       | 0                      |
| A14       | 14                                | 17                     | 19                                | 2.0                                     | 7.5                    |
| A15       | -7                                | 0                      | 0                                 | 0                                       | 0                      |
| A16       | 13                                | 13                     | 13                                | 1.8                                     | 1.8                    |
| A17       | 0                                 | 0                      | 0                                 | 0                                       | 0                      |
| B1        | 24                                | 30                     | 18                                | 11.6                                    | 23.3                   |
| B2        | -6                                | 0                      | 0                                 | 0                                       | 0                      |
| B3        | 1                                 | 4                      | 4                                 | 3.5                                     | 3.5                    |
| B4        | 2                                 | 2                      | 2                                 | 1.6                                     | 1.7                    |
| B5        | 9                                 | 15                     | 0                                 | 13.2                                    | 27.7                   |
| B6        | 1                                 | 2                      | 1                                 | 3.9                                     | 11.8                   |
| B7        | 25                                | 25                     | 13                                | 0.2                                     | 10.8                   |
| B8        | 14                                | 14                     | 0                                 | 0.8                                     | 8.3                    |
| B9        | 4                                 | 4                      | 7                                 | 0.8                                     | 8.5                    |

# Water Cut Differences After the Treatments

![](_page_20_Figure_1.jpeg)

## **Gross Changes After the Treatments**

Gross Change (m<sup>3</sup>/d)

![](_page_21_Figure_2.jpeg)

# Summary of Results (SPE 149658)

| Performance Data                      | A Field                             | B Field     |
|---------------------------------------|-------------------------------------|-------------|
| # Wells Stimulated                    | 17                                  | 16 (9 open) |
| Average Oil Gain (m³/d)               | 226                                 | 96          |
| Cumulative Oil Gain (m <sup>3</sup> ) | 105,270                             | 77,730      |
|                                       | -1.4                                | -1.9        |
| Water Cut (%)                         | (cum19.3%)                          | (cum11.5%)  |
|                                       | > 100 000 m <sup>3</sup> water redu | iced        |

![](_page_23_Picture_0.jpeg)

#### Chemical Structure of Hydrophobically Modified, Associative Polymer

![](_page_24_Figure_1.jpeg)